RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND BOLTZMANN EQUATIONS

被引:5
|
作者
Matthies, Karsten [1 ]
Theil, Florian [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
objective solution; Boltzmann equation; Fokker-Planck; hypocoercivity; GLOBAL EQUILIBRIUM; CONVERGENCE; HYPOCOERCIVITY; SYSTEMS; TREND; MODEL;
D O I
10.1137/18M1202335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equation and a closely related nonlinear Fokker-Planck equation. If the symmetry of the solutions corresponds to shear flows, the existence of stationary solutions can be ruled out because the energy is not conserved. After anisotropic rescaling, both equations conserve the energy. We show that the rescaled Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying). For the rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian in the long-time limit, however, the convergence rate is only algebraic, not exponential.
引用
收藏
页码:1321 / 1348
页数:28
相关论文
共 50 条
  • [1] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [2] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [3] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [4] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [5] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [6] On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions
    Goudon, T
    JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (3-4) : 751 - 776
  • [7] STEADY-STATE SOLUTIONS OF THE FOKKER-PLANCK EQUATIONS
    ZHENG, Q
    HAO, BL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1987, 8 (02) : 153 - 166
  • [8] Exact solutions of the Fokker-Planck equations with moving boundaries
    Lo, CF
    ANNALS OF PHYSICS, 2005, 319 (02) : 326 - 332
  • [9] ANALYTICAL SOLUTIONS OF A CLASS OF MULTIDIMENSIONAL FOKKER-PLANCK EQUATIONS
    ZHANG, WJ
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 791 - 799
  • [10] PROBABILISTIC REPRESENTATION FOR SOLUTIONS TO NONLINEAR FOKKER-PLANCK EQUATIONS
    Barbu, Viorel
    Roeckner, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 4246 - 4260