RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND BOLTZMANN EQUATIONS

被引:5
|
作者
Matthies, Karsten [1 ]
Theil, Florian [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
objective solution; Boltzmann equation; Fokker-Planck; hypocoercivity; GLOBAL EQUILIBRIUM; CONVERGENCE; HYPOCOERCIVITY; SYSTEMS; TREND; MODEL;
D O I
10.1137/18M1202335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equation and a closely related nonlinear Fokker-Planck equation. If the symmetry of the solutions corresponds to shear flows, the existence of stationary solutions can be ruled out because the energy is not conserved. After anisotropic rescaling, both equations conserve the energy. We show that the rescaled Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying). For the rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian in the long-time limit, however, the convergence rate is only algebraic, not exponential.
引用
收藏
页码:1321 / 1348
页数:28
相关论文
共 50 条
  • [41] FOKKER-PLANCK EQUATIONS FOR EIGENSTATE DISTRIBUTIONS
    LINDBLAD, G
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) : 161 - 174
  • [42] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [43] Thermodynamics and fractional Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [44] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [45] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [46] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [47] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [48] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [49] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [50] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170