On explicit steady-state solutions of Fokker-Planck equations for a class of nonlinear feedback systems

被引:0
|
作者
Brockett, RW [1 ]
Liberzon, D [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the question of existence of steady-state probability distributions for systems perturbed by white noise. We describe a class of nonlinear feedback systems for which an explicit formula for the steady-state probability density can be found. These systems include what has been called monotemperaturic systems in earlier work, We also establish relationships between the steady-state probability densities and Liapunov functions for the corresponding deterministic systems.
引用
收藏
页码:264 / 268
页数:5
相关论文
共 50 条
  • [31] Towards Nonlinear Quantum Fokker-Planck Equations
    Tsekov, Roumen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (05) : 1431 - 1435
  • [32] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [33] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [34] ONE CLASS OF SOLUTIONS TO FOKKER-PLANCK EQUATION
    MAKOV, YN
    KHOKHLOV, RV
    DOKLADY AKADEMII NAUK SSSR, 1976, 227 (02): : 315 - 317
  • [35] The invariance principle for nonlinear Fokker-Planck equations
    Barbu, Viorel
    Rockner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 315 : 200 - 221
  • [36] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [37] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [38] Global solutions to a nonlinear Fokker-Planck equation
    Zhang, Xingang
    Liu, Zhe
    Ding, Ling
    Tang, Bo
    AIMS MATHEMATICS, 2023, 8 (07): : 16115 - 16126
  • [39] H-theorems for systems of coupled nonlinear Fokker-Planck equations
    Plastino, A. R.
    Wedemann, R. S.
    Nobre, F. D.
    EPL, 2022, 139 (01)
  • [40] Exact solutions of nonlinear Fokker-Planck equations of the Desai-Zwanzig type
    Lo, CF
    PHYSICS LETTERS A, 2005, 336 (2-3) : 141 - 144