Unsupervised Cross-Domain Prerequisite Chain Learning using Variational Graph Autoencoders

被引:0
|
作者
Li, Irene [1 ]
Yan, Vanessa [1 ]
Li, Tianxiao [1 ]
Qu, Rihao [1 ]
Radev, Dragomir [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning prerequisite chains is an essential task for efficiently acquiring knowledge in both known and unknown domains. For example, one may be an expert in the natural language processing (NLP) domain but want to determine the best order to learn new concepts in an unfamiliar Computer Vision domain (CV). Both domains share some common concepts, such as machine learning basics and deep learning models. In this paper, we propose unsupervised cross-domain concept prerequisite chain learning using an optimized variational graph autoencoder. Our model learns to transfer concept prerequisite relations from an information-rich domain (source domain) to an information-poor domain (target domain), substantially surpassing other baseline models. Also, we expand an existing dataset by introducing two new domains-CV and Bioinformatics (BIO). The annotated data and resources, as well as the code, will be made publicly available.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 50 条
  • [41] Unsupervised Cross-Domain Singing Voice Conversion
    Polyak, Adam
    Wolf, Lior
    Adi, Yossi
    Taigman, Yaniv
    INTERSPEECH 2020, 2020, : 801 - 805
  • [42] ACDC: Online unsupervised cross-domain adaptation
    de Carvalho, Marcus
    Pratama, Mahardhika
    Zhang, Jie
    Yee, Edward Yapp Kien
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [43] Translation as Cross-Domain Knowledge: Attention Augmentation for Unsupervised Cross-Domain Segmenting and Labeling Tasks
    Luo, Ruixuan
    Zhang, Yi
    Chen, Sishuo
    Sun, Xu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 1896 - 1906
  • [44] RecGraph: Graph Recovery Attack using Variational Graph Autoencoders
    Tian, Jing
    Liu, Chang
    Gou, Gaopeng
    Li, Zhen
    Xiong, Gang
    Guan, Yangyang
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [45] Unsupervised Cross-Domain White Blood Cells Classification Using DANN
    Zhang, Lixin
    Fu, Yining
    Yang, Yuhao
    Ding, Yongzheng
    Yu, Xuyao
    Li, Huanming
    Yu, Hui
    Chen, Chong
    2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022, 2022, : 17 - 21
  • [46] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [47] Heterogeneous Graph Embedding for Cross-Domain Recommendation Through Adversarial Learning
    Li, Jin
    Peng, Zhaohui
    Wang, Senzhang
    Xu, Xiaokang
    Yu, Philip S.
    Hao, Zhenyun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 507 - 522
  • [48] A deep learning architecture for aligning cross-domain geographic knowledge graph
    Qiu, Qinjun
    Zheng, Shiyu
    Li, Jiali
    Tian, Miao
    Li, Zixuan
    Tao, Liufeng
    Zhu, Yunqiang
    Huang, Yi
    Chen, Zhanlong
    Xie, Zhong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2025,
  • [49] Graph Disentangled Contrastive Learning with Personalized Transfer for Cross-Domain Recommendation
    Liu, Jing
    Sun, Lele
    Nie, Weizhi
    Jing, Peiguang
    Su, Yuting
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8769 - 8777
  • [50] Heterogeneous graph contrastive learning for cold start cross-domain recommendation
    Xie, Yuanzhen
    Yu, Chenyun
    Jin, Xinzhou
    Cheng, Lei
    Hu, Bo
    Li, Zang
    KNOWLEDGE-BASED SYSTEMS, 2024, 299