Unsupervised Cross-Domain Prerequisite Chain Learning using Variational Graph Autoencoders

被引:0
|
作者
Li, Irene [1 ]
Yan, Vanessa [1 ]
Li, Tianxiao [1 ]
Qu, Rihao [1 ]
Radev, Dragomir [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning prerequisite chains is an essential task for efficiently acquiring knowledge in both known and unknown domains. For example, one may be an expert in the natural language processing (NLP) domain but want to determine the best order to learn new concepts in an unfamiliar Computer Vision domain (CV). Both domains share some common concepts, such as machine learning basics and deep learning models. In this paper, we propose unsupervised cross-domain concept prerequisite chain learning using an optimized variational graph autoencoder. Our model learns to transfer concept prerequisite relations from an information-rich domain (source domain) to an information-poor domain (target domain), substantially surpassing other baseline models. Also, we expand an existing dataset by introducing two new domains-CV and Bioinformatics (BIO). The annotated data and resources, as well as the code, will be made publicly available.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 50 条
  • [31] Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data
    Hsu, Tzu-Ming Harry
    Chen, Wei-Yu
    Hou, Cheng-An
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4121 - 4129
  • [32] Cross-domain feature enhancement for unsupervised domain adaptation
    Sifan, Long
    Shengsheng, Wang
    Xin, Zhao
    Zihao, Fu
    Bilin, Wang
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17326 - 17340
  • [33] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Li, Jingzheng
    Sun, Hailong
    MACHINE LEARNING, 2023, 112 (09) : 3473 - 3496
  • [34] Discriminative Extreme Learning Machine with Cross-Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Li, Xinghai
    Ma, Jianwei
    Yan, Yongyi
    Lv, Jinfeng
    Wei, Yuan
    COMPLEXITY, 2022, 2022
  • [35] Unsupervised Feature Representation Learning for Domain-generalized Cross-domain Image Retrieval
    Hu, Conghui
    Zhang, Can
    Lee, Gim Hee
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10982 - 10991
  • [36] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Jingzheng Li
    Hailong Sun
    Machine Learning, 2023, 112 : 3473 - 3496
  • [37] A Coherent Cooperative Learning Framework Based on Transfer Learning for Unsupervised Cross-Domain Classification
    Shan, Xinxin
    Wen, Ying
    Li, Qingli
    Lu, Yue
    Cai, Haibin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 96 - 106
  • [38] Unsupervised Speech Enhancement Using Dynamical Variational Autoencoders
    Bie, Xiaoyu
    Leglaive, Simon
    Alameda-Pineda, Xavier
    Girin, Laurent
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 2993 - 3007
  • [39] Link Activation Using Variational Graph Autoencoders
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2358 - 2361
  • [40] Cross-Domain Graph Anomaly Detection
    Ding, Kaize
    Shu, Kai
    Shan, Xuan
    Li, Jundong
    Liu, Huan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2406 - 2415