Unsupervised Cross-Domain Prerequisite Chain Learning using Variational Graph Autoencoders

被引:0
|
作者
Li, Irene [1 ]
Yan, Vanessa [1 ]
Li, Tianxiao [1 ]
Qu, Rihao [1 ]
Radev, Dragomir [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning prerequisite chains is an essential task for efficiently acquiring knowledge in both known and unknown domains. For example, one may be an expert in the natural language processing (NLP) domain but want to determine the best order to learn new concepts in an unfamiliar Computer Vision domain (CV). Both domains share some common concepts, such as machine learning basics and deep learning models. In this paper, we propose unsupervised cross-domain concept prerequisite chain learning using an optimized variational graph autoencoder. Our model learns to transfer concept prerequisite relations from an information-rich domain (source domain) to an information-poor domain (target domain), substantially surpassing other baseline models. Also, we expand an existing dataset by introducing two new domains-CV and Bioinformatics (BIO). The annotated data and resources, as well as the code, will be made publicly available.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 50 条
  • [21] Cross-domain object detection using unsupervised image translation
    Arruda, Vinicius F.
    Berriel, Rodrigo F.
    Paixao, Thiago M.
    Badue, Claudine
    De Souza, Alberto F.
    Sebe, Nicu
    Oliveira-Santos, Thiago
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 192
  • [22] Learning Scene Graph for Better Cross-Domain Image Captioning
    Jia, Junhua
    Xin, Xiaowei
    Gao, Xiaoyan
    Ding, Xiangqian
    Pang, Shunpeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 121 - 137
  • [23] FedCKE: Cross-Domain Knowledge Graph Embedding in Federated Learning
    Huang, Wei
    Liu, Jia
    Li, Tianrui
    Ji, Shenggong
    Wang, Dexian
    Huang, Tianqiang
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 792 - 804
  • [24] Unsupervised content and style learning for multimodal cross-domain image translation
    Lin, Zhijie
    Chen, Jingjing
    Ma, Xiaolong
    Li, Chao
    Zhang, Huiming
    Zhao, Lei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Unsupervised Cross-domain Learning by Interaction Information Co-clustering
    Ando, Shin
    Suzuki, Einoshin
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 13 - +
  • [26] Cross-domain Beauty Item Retrieval via Unsupervised Embedding Learning
    Lin, Zehang
    Xie, Haoran
    Kang, Peipei
    Yang, Zhenguo
    Liu, Wenyin
    Li, Qing
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2543 - 2547
  • [27] Cross-Domain Variational Adversarial Autoencoder
    Bai J.
    Tian D.
    Zhang L.
    Yang N.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (09): : 1402 - 1410
  • [28] Unsupervised Transfer Components Learning for Cross-Domain Speech Emotion Recognition
    Jiang, Shenjie
    Song, Peng
    Li, Shaokai
    Zhao, Keke
    Zheng, Wenming
    INTERSPEECH 2023, 2023, : 4538 - 4542
  • [29] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    Applied Intelligence, 2022, 52 : 17326 - 17340
  • [30] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448