Bifurcation in weighted Sobolev spaces

被引:6
|
作者
Rabier, Patrick J. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1088/0951-7715/21/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When P(x, partial derivative) is a second order linear elliptic differential operator on R(N), many bifurcation problems P(x, partial derivative)u - lambda u + f (x, u) = 0 cannot be formulated as a functional equation from W(2,p) := W(2,p)(R(N)) to L(p) := L(p)(R(N)) irrespective of p is an element of[1, infinity], either because the Nemystskii operator f(u) := f (x, u) does not map W(2,p) to L(p) due to the growth of f as vertical bar x vertical bar -> infinity or because, while well defined, f is not Frechet differentiable. Far from being pathological, the latter may happen even when f is C(infinity). In this paper, we show that all these difficulties may often be circumvented by replacing the spaces W(2,p) and L(p) by weighted spaces W(2,p). and L(omega)(p) where omega is an 'admissible' weight and p is an element of (1, infinity), p > N/2. Even though the admissibility of omega depends in part upon f, this still yields a bifurcation theorem in W(2,p) due to the inclusion W(omega)(2,p) hooked right arrow W(2,p). In addition, this approach can be fine tuned to discuss bifurcation in some degenerate elliptic problems after a suitable change of the variables x and u. The problem -vertical bar x vertical bar(4) Delta u + (Q(x)- lambda)u - g(u) = 0 is treated as an example.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [41] Spaces Associated with Weighted Sobolev Spaces on the Real Line
    D. V. Prokhorov
    V. D. Stepanov
    E. P. Ushakova
    Doklady Mathematics, 2018, 98 : 373 - 376
  • [42] Spaces Associated with Weighted Sobolev Spaces on the Real Line
    Prokhorov, D. V.
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 98 (01) : 373 - 376
  • [43] GENERALIZED WEIGHTED SOBOLEV SPACES AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS Ⅱ
    JoséM.Rodriguez
    ElenaRomeraandDomingoPestana
    VenancioAlvarez
    Approximation Theory and Its Applications, 2002, (02) : 1 - 32
  • [44] A characterization of weighted Sobolev spaces via weighted Riesz bounded variation spaces
    Cruz-Uribe, David
    Guzman, Oscar
    Rafeiro, Humberto
    STUDIA MATHEMATICA, 2024, 274 (03) : 287 - 304
  • [45] Weighted fractional Sobolev spaces as interpolation spaces in bounded domains
    Acosta, Gabriel
    Drelichman, Irene
    Duran, Ricardo G. G.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4374 - 4385
  • [46] INVERSE POWER METHOD AND WEIGHTED SOBOLEV SPACES
    丁毅
    ActaMathematicaScientia, 1992, (01) : 7 - 21
  • [47] Spectral gaps of potentials in weighted Sobolev spaces
    Poeschel, Juergen
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 421 - 430
  • [48] KDV, BO AND FRIENDS IN WEIGHTED SOBOLEV SPACES
    IORIO, RJ
    LECTURE NOTES IN MATHEMATICS, 1990, 1450 : 104 - 121
  • [49] Traces of monotone functions in weighted Sobolev spaces
    Manfredi, JJ
    Villamor, E
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (02) : 403 - 422
  • [50] WEIGHTED SOBOLEV SPACES, CAPACITIES AND EXCEPTIONAL SETS
    Tarasova, I. M.
    Shlyk, V. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1552 - 1570