Bifurcation in weighted Sobolev spaces

被引:6
|
作者
Rabier, Patrick J. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1088/0951-7715/21/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When P(x, partial derivative) is a second order linear elliptic differential operator on R(N), many bifurcation problems P(x, partial derivative)u - lambda u + f (x, u) = 0 cannot be formulated as a functional equation from W(2,p) := W(2,p)(R(N)) to L(p) := L(p)(R(N)) irrespective of p is an element of[1, infinity], either because the Nemystskii operator f(u) := f (x, u) does not map W(2,p) to L(p) due to the growth of f as vertical bar x vertical bar -> infinity or because, while well defined, f is not Frechet differentiable. Far from being pathological, the latter may happen even when f is C(infinity). In this paper, we show that all these difficulties may often be circumvented by replacing the spaces W(2,p) and L(p) by weighted spaces W(2,p). and L(omega)(p) where omega is an 'admissible' weight and p is an element of (1, infinity), p > N/2. Even though the admissibility of omega depends in part upon f, this still yields a bifurcation theorem in W(2,p) due to the inclusion W(omega)(2,p) hooked right arrow W(2,p). In addition, this approach can be fine tuned to discuss bifurcation in some degenerate elliptic problems after a suitable change of the variables x and u. The problem -vertical bar x vertical bar(4) Delta u + (Q(x)- lambda)u - g(u) = 0 is treated as an example.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [21] Continuity and differentiability for weighted Sobolev spaces
    Mizuta, Y
    Shimomura, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) : 2985 - 2994
  • [22] Weierstrass' theorem in weighted Sobolev spaces
    Rodríguez, JM
    JOURNAL OF APPROXIMATION THEORY, 2001, 108 (02) : 119 - 160
  • [23] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    王万义
    孙炯
    郑志明
    Applied Mathematics and Mechanics(English Edition), 2006, (01) : 125 - 132
  • [24] Weighted Sobolev spaces and quasiconformal mappings
    Vodop'yanov, SK
    Ukhlov, AD
    DOKLADY MATHEMATICS, 2005, 72 (01) : 561 - 566
  • [25] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    LACAZE, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (09): : 411 - 414
  • [26] On weighted Sobolev spaces on the real line
    D. V. Prokhorov
    V. D. Stepanov
    E. P. Ushakova
    Doklady Mathematics, 2016, 93 : 78 - 81
  • [27] SOME IDENTITIES ON WEIGHTED SOBOLEV SPACES
    Boulmezaoud, Tahar Z.
    Kourta, Amel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 427 - 434
  • [28] Weighted Variable Sobolev Spaces and Capacity
    Aydin, Ismail
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [29] Poincaré inequalities in weighted Sobolev spaces
    Wan-yi Wang
    Jiong Sun
    Zhi-ming Zheng
    Applied Mathematics and Mechanics, 2006, 27 : 125 - 132
  • [30] On weighted critical imbeddings of Sobolev spaces
    Edmunds, D. E.
    Hudzik, H.
    Krbec, M.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 585 - 592