Bifurcation in weighted Sobolev spaces

被引:6
|
作者
Rabier, Patrick J. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1088/0951-7715/21/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When P(x, partial derivative) is a second order linear elliptic differential operator on R(N), many bifurcation problems P(x, partial derivative)u - lambda u + f (x, u) = 0 cannot be formulated as a functional equation from W(2,p) := W(2,p)(R(N)) to L(p) := L(p)(R(N)) irrespective of p is an element of[1, infinity], either because the Nemystskii operator f(u) := f (x, u) does not map W(2,p) to L(p) due to the growth of f as vertical bar x vertical bar -> infinity or because, while well defined, f is not Frechet differentiable. Far from being pathological, the latter may happen even when f is C(infinity). In this paper, we show that all these difficulties may often be circumvented by replacing the spaces W(2,p) and L(p) by weighted spaces W(2,p). and L(omega)(p) where omega is an 'admissible' weight and p is an element of (1, infinity), p > N/2. Even though the admissibility of omega depends in part upon f, this still yields a bifurcation theorem in W(2,p) due to the inclusion W(omega)(2,p) hooked right arrow W(2,p). In addition, this approach can be fine tuned to discuss bifurcation in some degenerate elliptic problems after a suitable change of the variables x and u. The problem -vertical bar x vertical bar(4) Delta u + (Q(x)- lambda)u - g(u) = 0 is treated as an example.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [11] Existence of functions in weighted Sobolev spaces
    Futamura, T
    Mizuta, Y
    NAGOYA MATHEMATICAL JOURNAL, 2001, 164 : 75 - 88
  • [12] Interpolation Theorems for Weighted Sobolev Spaces
    Kussainova, Leili
    Ospanova, Ademi
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 25 - +
  • [13] On the Whitney Problem for Weighted Sobolev Spaces
    Tyulenev, A. I.
    Vodop'yanov, S. K.
    DOKLADY MATHEMATICS, 2017, 95 (01) : 79 - 83
  • [14] WEIGHTED NORM ESTIMATES FOR SOBOLEV SPACES
    SCHECHTER, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (02) : 669 - 687
  • [15] A new approach to weighted Sobolev spaces
    Kebiche, Djameleddine
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 893 - 920
  • [16] Multipliers in weighted Sobolev spaces on the axis
    Myrzagaliyeva, A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 105 - 115
  • [17] The Wente inequality on weighted Sobolev spaces
    Baraket, S
    Ben Chaabane, L
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (04): : 1065 - 1075
  • [18] Certain imbeddings of weighted Sobolev spaces
    Jain, P
    Bansal, B
    Jain, PK
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 105 - 120
  • [19] Jumping nonlinearities and weighted Sobolev spaces
    Rumbos, AJ
    Shapiro, VL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) : 326 - 357
  • [20] On weighted critical imbeddings of Sobolev spaces
    D. E. Edmunds
    H. Hudzik
    M. Krbec
    Mathematische Zeitschrift, 2011, 268 : 585 - 592