Bifurcation in weighted Sobolev spaces

被引:6
|
作者
Rabier, Patrick J. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1088/0951-7715/21/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When P(x, partial derivative) is a second order linear elliptic differential operator on R(N), many bifurcation problems P(x, partial derivative)u - lambda u + f (x, u) = 0 cannot be formulated as a functional equation from W(2,p) := W(2,p)(R(N)) to L(p) := L(p)(R(N)) irrespective of p is an element of[1, infinity], either because the Nemystskii operator f(u) := f (x, u) does not map W(2,p) to L(p) due to the growth of f as vertical bar x vertical bar -> infinity or because, while well defined, f is not Frechet differentiable. Far from being pathological, the latter may happen even when f is C(infinity). In this paper, we show that all these difficulties may often be circumvented by replacing the spaces W(2,p) and L(p) by weighted spaces W(2,p). and L(omega)(p) where omega is an 'admissible' weight and p is an element of (1, infinity), p > N/2. Even though the admissibility of omega depends in part upon f, this still yields a bifurcation theorem in W(2,p) due to the inclusion W(omega)(2,p) hooked right arrow W(2,p). In addition, this approach can be fine tuned to discuss bifurcation in some degenerate elliptic problems after a suitable change of the variables x and u. The problem -vertical bar x vertical bar(4) Delta u + (Q(x)- lambda)u - g(u) = 0 is treated as an example.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [1] Weighted Sobolev spaces
    Zhikov, VV
    SBORNIK MATHEMATICS, 1998, 189 (7-8) : 1139 - 1170
  • [2] On weighted Sobolev spaces
    Chua, SK
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (03): : 527 - 541
  • [3] SPACES OF WEIGHTED SYMBOLS AND WEIGHTED SOBOLEV SPACES ON MANIFOLDS
    SCHROHE, E
    LECTURE NOTES IN MATHEMATICS, 1987, 1256 : 360 - 377
  • [4] Multipliers in weighted Sobolev spaces
    Kusainova, LK
    SBORNIK MATHEMATICS, 2005, 196 (7-8) : 1109 - 1136
  • [5] The Action of √−Δ on Weighted Sobolev Spaces
    T. Umeda
    Letters in Mathematical Physics, 2000, 54 : 301 - 313
  • [6] Interpolation of weighted Sobolev spaces
    Cwikel, Michael
    Einav, Amit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) : 2381 - 2441
  • [7] The action of √-Δ on weighted Sobolev spaces
    Umeda, T
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) : 301 - 313
  • [8] WEIGHTED SOBOLEV SPACES AND CAPACITY
    KILPELAINEN, T
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1994, 19 (01): : 95 - 113
  • [9] Weighted Sobolev spaces on curves
    Alvarez, V
    Pestana, D
    Rodríguez, JM
    Romera, E
    JOURNAL OF APPROXIMATION THEORY, 2002, 119 (01) : 41 - 85
  • [10] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65