Specific heat properties of electrons in generalized Fibonacci quasicrystals

被引:19
|
作者
Mauriz, PW
Vasconcelos, MS
Albuquerque, EL [1 ]
机构
[1] Univ Fed Rio Grande Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[2] Ctr Fed Educ Tecnol Maranhao, Dept Ciencias Exatas, BR-65025001 Sao Luis, MA, Brazil
关键词
computer simulation; quasicrystals; fractal behavior; thermodynamical properties;
D O I
10.1016/S0378-4371(03)00605-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to investigate the specific heat properties of electrons in one-dimensional quasiperiodic potentials, arranged in accordance with the generalized Fibonacci sequence. The electronic energy spectra are calculated using the one-dimensional Schrodinger equation in a tight-binding approximation. Both analytical and numerical results on the temperature dependence of the electron's specific heat associated with their multiscale fractal energy spectra are presented. We compare our numerical results with those found for the ordinary Fibonacci structure. A rich and varied behavior is found for the specific heat oscillations when T --> 0, with interesting physical consequences. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [41] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [42] High-Temperature Atomic Diffusion and Specific Heat in Quasicrystals
    Nagai, Yuki
    Iwasaki, Yutaka
    Kitahara, Koichi
    Takagiwa, Yoshiki
    Kimura, Kaoru
    Shiga, Motoyuki
    PHYSICAL REVIEW LETTERS, 2024, 132 (19)
  • [43] Thermal conductivity of one-dimensional Fibonacci quasicrystals
    Maciá, E
    PHYSICAL REVIEW B, 2000, 61 (10) : 6645 - 6653
  • [44] Electronic energy spectra of square and cubic Fibonacci quasicrystals
    Mandel, S. Even-Dar
    Lifshitz, R.
    PHILOSOPHICAL MAGAZINE, 2008, 88 (13-15) : 2261 - 2273
  • [45] Fibonacci Generalized Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 631 - 641
  • [46] Some properties of partial derivatives of generalized Fibonacci and Lucas polynomials
    Djordjevic, GB
    FIBONACCI QUARTERLY, 2001, 39 (02): : 138 - 141
  • [47] CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES
    HORADAM, AF
    FILIPPONI, P
    FIBONACCI QUARTERLY, 1991, 29 (02): : 164 - 173
  • [48] On generalized Fibonacci quadratics
    Omur, Nese
    Gur, Zehra Betul
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (02) : 198 - 204
  • [49] SOME PROPERTIES OF A GENERALIZED FIBONACCI SEQUENCE MODULO-M
    WADDILL, ME
    FIBONACCI QUARTERLY, 1978, 16 (04): : 344 - 353
  • [50] ON THE GENERALIZED FIBONACCI PSEUDOPRIMES
    DIPORTO, A
    FILIPPONI, P
    MONTOLIVO, E
    FIBONACCI QUARTERLY, 1990, 28 (04): : 347 - 354