Specific heat properties of electrons in generalized Fibonacci quasicrystals

被引:19
|
作者
Mauriz, PW
Vasconcelos, MS
Albuquerque, EL [1 ]
机构
[1] Univ Fed Rio Grande Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[2] Ctr Fed Educ Tecnol Maranhao, Dept Ciencias Exatas, BR-65025001 Sao Luis, MA, Brazil
关键词
computer simulation; quasicrystals; fractal behavior; thermodynamical properties;
D O I
10.1016/S0378-4371(03)00605-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to investigate the specific heat properties of electrons in one-dimensional quasiperiodic potentials, arranged in accordance with the generalized Fibonacci sequence. The electronic energy spectra are calculated using the one-dimensional Schrodinger equation in a tight-binding approximation. Both analytical and numerical results on the temperature dependence of the electron's specific heat associated with their multiscale fractal energy spectra are presented. We compare our numerical results with those found for the ordinary Fibonacci structure. A rich and varied behavior is found for the specific heat oscillations when T --> 0, with interesting physical consequences. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [21] Some properties of generalized Fibonacci sequence spaces
    Kara, Emrah Evren
    Ilkhan, Merve
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (11): : 2208 - 2223
  • [22] Some Properties of the Generalized Fibonacci and Lucas Numbers
    Djordjevic, Gospava B.
    Djordjevic, Snezana S.
    FILOMAT, 2020, 34 (08) : 2655 - 2665
  • [23] SOME DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI SEQUENCES
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1979, 17 (01): : 42 - 49
  • [24] Arithmetic Properties of Generalized Fibonacci Sequence and Their Consequences
    Vassilyev, A. N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 34 - 41
  • [25] SOME ASYMPTOTIC PROPERTIES OF GENERALIZED FIBONACCI NUMBERS
    SHANNON, AG
    FIBONACCI QUARTERLY, 1984, 22 (03): : 239 - 243
  • [26] Investigation Of Generalized Fibonacci Hybrid Numbers And Their Properties
    Cerda-Morales, Gamaliel
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 110 - 118
  • [27] Fibonacci optical lattices for tunable quantum quasicrystals
    Singh, K.
    Saha, K.
    Parameswaran, S. A.
    Weld, D. M.
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [28] Light-pulse propagation in Fibonacci quasicrystals
    Ghulinyan, M
    Oton, CJ
    Dal Negro, L
    Pavesi, L
    Sapienza, R
    Colocci, M
    Wiersma, DS
    PHYSICAL REVIEW B, 2005, 71 (09)
  • [29] Generalized Fibonacci functions and sequences of generalized Fibonacci functions
    Lee, GY
    Kim, JS
    Cho, TH
    FIBONACCI QUARTERLY, 2003, 41 (02): : 108 - 121
  • [30] Band gaps and transmission spectra in generalized Fibonacci σ(p, q) one-dimensional magnonic quasicrystals
    Costa, C. H. O.
    Vasconcelos, M. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (28)