Electronic energy spectra of square and cubic Fibonacci quasicrystals

被引:25
|
作者
Mandel, S. Even-Dar [1 ]
Lifshitz, R. [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Fibonacci quasicrystals; electronic spectra; electronic transport; quasicrystals;
D O I
10.1080/14786430802070805
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the electronic properties of quasicrystals, in particular the dependence of these properties on dimension, is among the interesting open problems in the field of quasicrystals. We investigate an off-diagonal tight-binding hamiltonian on the separable square and cubic Fibonacci quasicrystals. We use the well-studied Cantor-like energy spectrum of the one-dimensional Fibonacci quasicrystal to obtain exact results regarding the transitions between different spectral behaviours of the square and cubic quasicrystals. We use analytical results for the addition of one-dimensional spectra to obtain bounds on the range in which the higher-dimensional spectra contain an interval as a component. We also perform a direct numerical study of the spectra, obtaining good results for the square Fibonacci quasicrystal, and rough estimates for the cubic Fibonacci quasicrystal.
引用
收藏
页码:2261 / 2273
页数:13
相关论文
共 50 条
  • [1] Electronic energy spectra and wave functions on the square Fibonacci tiling
    Mandel, SED
    Lifshitz, R
    PHILOSOPHICAL MAGAZINE, 2006, 86 (6-8) : 759 - 764
  • [2] Clustering resonance effects in the electronic energy spectrum of tridiagonal Fibonacci quasicrystals
    Macia, Enrique
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (10):
  • [3] Studies on the properties of electronic energy spectra for two-dimensional Fibonacci-class quasicrystals with one kind of atoms
    Yang, XB
    Xing, D
    Liu, YY
    ACTA PHYSICA SINICA, 2001, 50 (10) : 2032 - 2037
  • [4] Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals
    Costa, C. H. O.
    Vasconcelos, M. S.
    Barbosa, P. H. R.
    Barbosa Filho, F. F.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (14) : 2315 - 2323
  • [5] Fibonacci, quasicrystals and the beauty of flowers
    Gardiner, John
    PLANT SIGNALING & BEHAVIOR, 2012, 7 (12) : 1721 - 1723
  • [6] Excitonic polaritons in Fibonacci quasicrystals
    Hendrickson, J.
    Richards, B. C.
    Sweet, J.
    Khitrova, G.
    Poddubny, A. N.
    Ivchenko, E. L.
    Wegener, M.
    Gibbs, H. M.
    OPTICS EXPRESS, 2008, 16 (20) : 15382 - 15387
  • [7] Magnetic polaritons in Fibonacci quasicrystals
    Albuquerque, EL
    Guimaraes, ES
    PHYSICA A, 2000, 277 (3-4): : 405 - 414
  • [8] Topological superconductivity in Fibonacci quasicrystals
    Kobialka, Aksel
    Awoga, Oladunjoye A.
    Leijnse, Martin
    Domanski, Tadeusz
    Holmvall, Patric
    Black-Schaffer, Annica M.
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [9] Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths
    Yang, XB
    Xing, D
    PHYSICAL REVIEW B, 2002, 65 (13) : 1 - 6
  • [10] FIBONACCI SQUARE
    BERZSENYI, G
    FIBONACCI QUARTERLY, 1976, 14 (05): : 471 - 472