Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters

被引:10
|
作者
Sophocleous, L. [1 ]
Waldmann, A. D. [2 ,3 ]
Becher, T. [4 ]
Kallio, M. [5 ,6 ]
Rahtu, M. [5 ,6 ]
Miedema, M. [7 ,8 ]
Papadouri, T. [9 ]
Karaoli, C. [9 ]
Tingay, D. G. [10 ,11 ,12 ]
Van Kaam, A. H. [7 ,8 ]
Yerworth, R. [13 ]
Bayford, R. [14 ]
Frerichs, I [4 ]
机构
[1] Univ Cyprus, KIOS Res Ctr, Dept Elect & Comp Engn, Nicosia, Cyprus
[2] Rostock Univ, Dept Anaesthesiol & Intens Care Med, Med Ctr, Rostock, Germany
[3] SenTec AG, Landquart, Switzerland
[4] Univ Med Ctr Schleswig Holstein, Dept Anaesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[5] Univ Oulu, PEDEGO Res Unit, Oulu, Finland
[6] Oulu Univ Hosp, Dept Children & Adolescents, Oulu, Finland
[7] Univ Amsterdam, Emma Childrens Hosp, Dept Neonatol, Amsterdam UMC, Amsterdam, Netherlands
[8] Vrije Univ Amsterdam, Amsterdam, Netherlands
[9] Arch Makarios Iii Hosp, Neonatal Intens Care Unit, Nicosia, Cyprus
[10] Murdoch Childrens Res Inst, Neonatal Res, Parkville, Vic, Australia
[11] Univ Melbourne, Dept Paediat, Melbourne, Vic, Australia
[12] Royal Childrens Hosp, Neonatol, Parkville, Vic, Australia
[13] UCL, Dept Med Phys & Biomed Engn, London, England
[14] Middlesex Univ, Dept Nat Sci, London, England
基金
英国医学研究理事会;
关键词
EIT; electrical impedance; respiratory system; electrode rotation; electrode spacing; neonatal lung imaging; EIT belt; electrodes; positive end-expiratory pressure; LUNG-VOLUME; REGIONAL VENTILATION; SUSTAINED INFLATION; EIT; PRETERM; TIME; RECRUITMENT; PRESSURE; POSITION; INFANTS;
D O I
10.1088/1361-6579/ab7b42
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective: Non-adhesive textile electrode belts offer several advantages over adhesive electrodes and are increasingly used in neonatal patients during continuous electrical impedance tomography (EIT) lung monitoring. However, non-adhesive belts may rotate in unsedated patients and discrepancies between chest circumference and belt sizes may result in a gap between electrodes near the sternum. This project aimed to determine the effects of belt rotation and sternal electrode gap on commonly used lung EIT parameters. Approach: We developed a simulation framework based on a 3D finite-element model and introduced lung regions with little or no ventilation that could be changed according to a decremental positive end-expiratory pressure (PEEP) trial. Four degrees of sternal gap and belt rotation were simulated and their effect on the EIT parameters silent spaces, centre of ventilation, global inhomogeneity index and overdistension/collapsed lung (OD/CL) analysed. Additionally, seven premature infants were examined to assess the influence of leftward and rightward belt rotations in a clinical setting. Main results: Small violations of the electrode equidistance criterion and rotations of the belts less than one electrode space exert only minor effects on the EIT parameters and do not impede the interpretation. Rotations of two and three electrode spaces induce non-negligible effects that might lead to flawed interpretations. The 'best PEEP' determined with the OD/CL approach was robust and identifiable with all studied sternal gaps and belt rotations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Cranial Electrode Belt Position Improves Diagnostic Possibilities of Electrical Impedance Tomography during Laparoscopic Surgery with Capnoperitoneum
    Koldova, Kristyna
    Rara, Ales
    Mueller, Martin
    Tyll, Tomas
    Roubik, Karel
    SENSORS, 2023, 23 (20)
  • [32] Severe pressure ulcer caused by an electrode belt for monitoring electrical impedance tomography in two patients in the prone position
    Takayuki Hasegawa
    Keisuke Yoshida
    Takahiro Hakozaki
    Satoki Inoue
    JA Clinical Reports, 9
  • [33] Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study
    Jan Karsten
    Thomas Stueber
    Nicolas Voigt
    Eckhard Teschner
    Hermann Heinze
    Critical Care, 20
  • [34] Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study
    Karsten, Jan
    Stueber, Thomas
    Voigt, Nicolas
    Teschner, Eckhard
    Heinze, Hermann
    CRITICAL CARE, 2016, 20
  • [35] A review on electrical impedance tomography for pulmonary perfusion imaging
    Nguyen, D. T.
    Jin, C.
    Thiagalingam, A.
    McEwan, A. L.
    PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) : 695 - 706
  • [36] Pulmonary perfusion measured by means of electrical impedance tomography
    Noordegraaf, AV
    Kunst, PWA
    Janse, A
    Marcus, JT
    Postmus, PE
    Faes, TJC
    de Vries, PMJM
    PHYSIOLOGICAL MEASUREMENT, 1998, 19 (02) : 263 - 273
  • [37] Determinants of pulmonary perfusion measured by electrical impedance tomography
    Smit, HJ
    Noordegraaf, AV
    Marcus, JT
    Boonstra, A
    de Vries, PM
    Postmus, PE
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2004, 92 (1-2) : 45 - 49
  • [38] Electrical Impedance Tomography for Cardio-Pulmonary Monitoring
    Putensen, Christian
    Hentze, Benjamin
    Muenster, Stefan
    Muders, Thomas
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (08)
  • [39] Electrical Impedance Tomography for Assessment of Pulmonary Dysfunction in ALS
    McIlduff, Courtney
    Doussan, Allaire
    Yator, Irene
    Verga, Sarah
    Samaan, Soleil
    Gutierrez, Hilda
    Murphy, Ethan
    Stommel, Elijah
    Levy, Sean
    Smith, Christy
    Halter, Ryan
    Rutkove, Seward
    MUSCLE & NERVE, 2022, 66 : S29 - S30
  • [40] Research progress on electrical impedance tomography in pulmonary perfusion
    She L.
    Zhou R.
    Pan P.
    Li Z.
    Liu J.
    Xie F.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (06): : 1249 - 1254