de Rham and Dolbeault cohomology of solvmanifolds with local systems

被引:12
|
作者
Kasuya, Hisashi [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro, Tokyo 1528551, Japan
关键词
de Rham cohomology; local system; Lie algebra cohomology; Dolbeault cohomology; solvmanifold; POLYNOMIAL STRUCTURES; LIE-GROUPS;
D O I
10.4310/MRL.2014.v21.n4.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected solvable Lie group with a lattice G and the Lie algebra g and a representation. : G -> GL(V-p) whose restriction on the nilradical is unipotent. Consider the flat bundle E-p given by p. By using "many" characters {alpha} of G and "many" flat line bundles {E-alpha} over G/G, we show that an isomorphism circle plus({alpha}) II*(g, V-alpha circle times V-p) congruent to circle plus({E alpha}) II* (G/Gamma, E-alpha circle times E-p) holds. This isomorphism is a generalization of the well-known fact: "If G is nilpotent and. is unipotent then, the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) holds". By this result, we construct an explicit finite-dimensional cochain complex which compute the cohomology H*(G/Gamma, E.) of solvmanifolds even if the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) does not hold. For Dolbeault cohomology of complex parallelizable solvmanifolds, we also prove an analogue of the above isomorphism result which is a generalization of computations of Dolbeault cohomology of complex parallelizable nilmanifolds. By this isomorphism, we construct an explicit finite-dimensional cochain complex which compute the Dolbeault cohomology of complex parallelizable solvmanifolds.
引用
收藏
页码:781 / 805
页数:25
相关论文
共 50 条
  • [1] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    S. CONSOLE
    A. FINO
    H. KASUYA
    Transformation Groups, 2016, 21 : 653 - 680
  • [2] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    Console, S.
    Fino, A.
    Kasuya, H.
    TRANSFORMATION GROUPS, 2016, 21 (03) : 653 - 680
  • [3] On the de Rham cohomology of solvmanifolds
    Console, Sergio
    Fino, Anna
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (04) : 801 - 818
  • [4] Techniques of computations of Dolbeault cohomology of solvmanifolds
    Kasuya, Hisashi
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) : 437 - 447
  • [5] Techniques of computations of Dolbeault cohomology of solvmanifolds
    Hisashi Kasuya
    Mathematische Zeitschrift, 2013, 273 : 437 - 447
  • [6] de Rham Cohomology of Local Cohomology Modules
    Puthenpurakal, Tony J.
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 159 - 181
  • [7] Local holomorphic De Rham cohomology
    Du, Rong
    Yau, Stephen
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (02) : 365 - 374
  • [8] de Rham cohomology of local cohomology modules II
    Puthenpurakal, Tony J.
    Reddy, Rakesh B. T.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 77 - 94
  • [9] de Rham cohomology of local cohomology modules II
    Tony J. Puthenpurakal
    Rakesh B. T. Reddy
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 77 - 94
  • [10] Punctured local holomorphic de Rham cohomology
    Huang, XJ
    Luk, HS
    Yau, SST
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (03) : 633 - 640