de Rham and Dolbeault cohomology of solvmanifolds with local systems

被引:12
|
作者
Kasuya, Hisashi [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro, Tokyo 1528551, Japan
关键词
de Rham cohomology; local system; Lie algebra cohomology; Dolbeault cohomology; solvmanifold; POLYNOMIAL STRUCTURES; LIE-GROUPS;
D O I
10.4310/MRL.2014.v21.n4.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected solvable Lie group with a lattice G and the Lie algebra g and a representation. : G -> GL(V-p) whose restriction on the nilradical is unipotent. Consider the flat bundle E-p given by p. By using "many" characters {alpha} of G and "many" flat line bundles {E-alpha} over G/G, we show that an isomorphism circle plus({alpha}) II*(g, V-alpha circle times V-p) congruent to circle plus({E alpha}) II* (G/Gamma, E-alpha circle times E-p) holds. This isomorphism is a generalization of the well-known fact: "If G is nilpotent and. is unipotent then, the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) holds". By this result, we construct an explicit finite-dimensional cochain complex which compute the cohomology H*(G/Gamma, E.) of solvmanifolds even if the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) does not hold. For Dolbeault cohomology of complex parallelizable solvmanifolds, we also prove an analogue of the above isomorphism result which is a generalization of computations of Dolbeault cohomology of complex parallelizable nilmanifolds. By this isomorphism, we construct an explicit finite-dimensional cochain complex which compute the Dolbeault cohomology of complex parallelizable solvmanifolds.
引用
收藏
页码:781 / 805
页数:25
相关论文
共 50 条
  • [31] De Rham cohomology for Log Schemi
    Fornasiero, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8A (03): : 537 - 540
  • [32] On quantum de Rham cohomology theory
    Cao, HD
    Zhou, J
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 : 24 - 34
  • [33] De Rham cohomology of rigid spaces
    Grosse-Klönne, E
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (02) : 223 - 240
  • [34] De Rham cohomology of rigid spaces
    Elmar Große-Klönne
    Mathematische Zeitschrift, 2004, 247 : 223 - 240
  • [35] DE RHAM COHOMOLOGY OF AN ANALYTIC SPACE
    BLOOM, T
    HERRERA, M
    INVENTIONES MATHEMATICAE, 1969, 7 (04) : 275 - &
  • [36] De Rham Cohomology and Integration in Manifolds
    Sossinsky, A. B.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 1034 - 1037
  • [37] COHOMOLOGY WITH COEFFICIENTS IN Z(P) AND DE RHAM COHOMOLOGY - EXAMPLES
    HAMM, HA
    ASTERISQUE, 1989, (179-80) : 113 - 144
  • [38] DE RHAM COHOMOLOGY AND P-ADIC ETALE COHOMOLOGY
    ILLUSIE, L
    ASTERISQUE, 1990, (189-90) : 325 - 374
  • [39] OVERCONVERGENT DE RHAM-WITT COHOMOLOGY
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (02): : 197 - 262
  • [40] Poincaré duality for algebraic de rham cohomology
    Francesco Baldassarri
    Maurizio Cailotto
    Luisa Fiorot
    manuscripta mathematica, 2004, 114 : 61 - 116