de Rham and Dolbeault cohomology of solvmanifolds with local systems

被引:12
|
作者
Kasuya, Hisashi [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro, Tokyo 1528551, Japan
关键词
de Rham cohomology; local system; Lie algebra cohomology; Dolbeault cohomology; solvmanifold; POLYNOMIAL STRUCTURES; LIE-GROUPS;
D O I
10.4310/MRL.2014.v21.n4.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected solvable Lie group with a lattice G and the Lie algebra g and a representation. : G -> GL(V-p) whose restriction on the nilradical is unipotent. Consider the flat bundle E-p given by p. By using "many" characters {alpha} of G and "many" flat line bundles {E-alpha} over G/G, we show that an isomorphism circle plus({alpha}) II*(g, V-alpha circle times V-p) congruent to circle plus({E alpha}) II* (G/Gamma, E-alpha circle times E-p) holds. This isomorphism is a generalization of the well-known fact: "If G is nilpotent and. is unipotent then, the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) holds". By this result, we construct an explicit finite-dimensional cochain complex which compute the cohomology H*(G/Gamma, E.) of solvmanifolds even if the isomorphism H*(g, V-p) congruent to H*(G/Gamma, E.) does not hold. For Dolbeault cohomology of complex parallelizable solvmanifolds, we also prove an analogue of the above isomorphism result which is a generalization of computations of Dolbeault cohomology of complex parallelizable nilmanifolds. By this isomorphism, we construct an explicit finite-dimensional cochain complex which compute the Dolbeault cohomology of complex parallelizable solvmanifolds.
引用
收藏
页码:781 / 805
页数:25
相关论文
共 50 条
  • [21] On endomorphisms of the de Rham cohomology functor
    Li, Shizhang
    Mondal, Shubhodip
    GEOMETRY & TOPOLOGY, 2024, 28 (02) : 759 - 802
  • [22] Exponentially twisted de Rham cohomology and rigid cohomology
    Li, Shizhang
    Zhang, Dingxin
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 639 - 670
  • [23] DE RHAM COHOMOLOGY OF WHITNEY PRESTRATIFICATIONS
    VERONA, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (18): : 1340 - &
  • [24] De Rham Cohomology and Integration in Manifolds
    A. B. Sossinsky
    Mathematical Notes, 2020, 107 : 1034 - 1037
  • [25] Dwork cohomology, de Rham cohomology, and hypergeometric functions
    Adolphson, A
    Sperber, S
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 319 - 348
  • [26] A spectral sequence for de Rham cohomology
    Xie, Bingyong
    ACTA ARITHMETICA, 2011, 149 (03) : 245 - 263
  • [27] On approximations of the de Rham complex and their cohomology
    Bavula, V. V.
    Akcin, H. Melis Tekin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1447 - 1463
  • [28] The de Rham cohomology of the Suzuki curves
    Malmskog, Beth
    Pries, Rachel
    Weir, Colin
    ARITHMETIC GEOMETRY: COMPUTATION AND APPLICATIONS, 2019, 722 : 105 - 119
  • [29] DE RHAM COHOMOLOGY OF FLAG VARIETIES
    MARLIN, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1977, 105 (01): : 89 - 96
  • [30] DE RHAM COHOMOLOGY AND CONDUCTORS OF CURVES
    BLOCH, S
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 295 - 308