Punctured local holomorphic de Rham cohomology

被引:5
|
作者
Huang, XJ [1 ]
Luk, HS
Yau, SST
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
holomorphic de Rham cohomology; punctured local holomorphic de Rham; cohomology; isolated hypersurface singularity; Milnor number; Poincare number;
D O I
10.2969/jmsj/1191418993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a complex analytic space and x be an isolated singular point of V. We define the q-th punctured local holomorphic de Rham cohomology H-h(q)(V,x) to be the direct limit of H-h(q)(U - {x}) where U runs over strongly pseudoconvex neighborhoods of x in V, and H-h(q)(U - {x}) is the holomorphic de Rahm. cohomology of the complex manifold U - {x}. We prove that punctured local holomorphic de Rham cohomology is an important local invariant which can be used to tell when the singularity (V, x) is quasi-homogeneous. We also define and compute various Poincare number (p) over tilde ((i))(x) and (p) over bar ((i))(x) of isolated hypersurface singularity (V,x).
引用
收藏
页码:633 / 640
页数:8
相关论文
共 50 条
  • [1] Local holomorphic De Rham cohomology
    Du, Rong
    Yau, Stephen
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (02) : 365 - 374
  • [2] de Rham Cohomology of Local Cohomology Modules
    Puthenpurakal, Tony J.
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 159 - 181
  • [3] de Rham cohomology of local cohomology modules II
    Puthenpurakal, Tony J.
    Reddy, Rakesh B. T.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 77 - 94
  • [4] de Rham cohomology of local cohomology modules II
    Tony J. Puthenpurakal
    Rakesh B. T. Reddy
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 77 - 94
  • [5] DE RHAM COHOMOLOGY OF LOCAL COHOMOLOGY MODULES: THE GRADED CASE
    Puthenpurakal, Tony J.
    NAGOYA MATHEMATICAL JOURNAL, 2015, 217 : 1 - 21
  • [6] de Rham and Dolbeault cohomology of solvmanifolds with local systems
    Kasuya, Hisashi
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 781 - 805
  • [7] Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms
    Alarcon, Antonio
    Larusson, Finnur
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
  • [8] Holomorphic and de Rham torsion
    Bismut, JM
    COMPOSITIO MATHEMATICA, 2004, 140 (05) : 1302 - 1356
  • [9] De Rham cohomology for supervarieties
    Polishchuk, Alexander
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)
  • [10] On twisted de Rham cohomology
    Adolphson, A
    Sperber, S
    NAGOYA MATHEMATICAL JOURNAL, 1997, 146 : 55 - 81