Min-max property in metric spaces with convex structure

被引:8
|
作者
Gabeleh, M. [1 ]
Kunzi, H. -P. A. [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Sch Math, Inst Res Fundamental Sci IPM, Dept Math, POB 19395-5746, Tehran, Iran
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
proximal normal structure; noncyclic relatively nonexpansive mapping; uniformly in every direction convex metric space; RELATIVELY NONEXPANSIVE-MAPPINGS; UNIFORMLY CONVEX; POINT THEOREM; MINIMAL SETS; PROXIMITY;
D O I
10.1007/s10474-018-0857-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of convex metric spaces, we introduce the two geometric notions of uniform convexity in every direction as well as sequential convexity. They are used to study a concept of proximal normal structure. We also consider the class of noncyclic relatively nonexpansive mappings and analyze the min-max property for such mappings. As an application of our main results we conclude with some best proximity pair theorems for noncyclic mappings.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 50 条
  • [41] Analysis of min-max systems
    Olsder, GJ
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1996, 30 (01): : 17 - 30
  • [42] MIN-MAX MINIMAL HYPERSURFACE
    Zhou, Xin
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 100 (01) : 129 - 160
  • [43] Online Min-Max Paging
    Chiplunkar, Ashish
    Henzinger, Monika
    Kale, Sagar Sudhir
    Voetsch, Maximilian
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 1545 - 1565
  • [44] Generalized Min-Max classifier
    Rizzi, A
    Mascioli, FMF
    Martinelli, G
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 36 - 41
  • [45] Study of min-max systems
    Olsder, G.J.
    RAIRO Recherche Operationnelle, 1996, 30 (01): : 17 - 30
  • [46] On stabilization of min-max systems
    Zhao, QC
    Zheng, DZ
    AUTOMATICA, 2003, 39 (04) : 751 - 756
  • [47] Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint
    Halman, Nir
    Kovalyov, Mikhail Y.
    Quilliot, Alain
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (02): : 235 - 246
  • [48] Reflected min-max heaps
    Makris, C
    Tsakalidis, A
    Tsichlas, K
    INFORMATION PROCESSING LETTERS, 2003, 86 (04) : 209 - 214
  • [49] AN EXTENSION OF MIN-MAX THEOREM
    PONSTEIN, J
    SIAM REVIEW, 1965, 7 (02) : 181 - &
  • [50] On Min-Max Pair in Tournaments
    Lu, Xiaoyun
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 613 - 618