Min-max property in metric spaces with convex structure

被引:8
|
作者
Gabeleh, M. [1 ]
Kunzi, H. -P. A. [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Sch Math, Inst Res Fundamental Sci IPM, Dept Math, POB 19395-5746, Tehran, Iran
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
proximal normal structure; noncyclic relatively nonexpansive mapping; uniformly in every direction convex metric space; RELATIVELY NONEXPANSIVE-MAPPINGS; UNIFORMLY CONVEX; POINT THEOREM; MINIMAL SETS; PROXIMITY;
D O I
10.1007/s10474-018-0857-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of convex metric spaces, we introduce the two geometric notions of uniform convexity in every direction as well as sequential convexity. They are used to study a concept of proximal normal structure. We also consider the class of noncyclic relatively nonexpansive mappings and analyze the min-max property for such mappings. As an application of our main results we conclude with some best proximity pair theorems for noncyclic mappings.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 50 条
  • [31] A MIN-MAX THEOREM ON POTENTIALS
    KAUFMAN, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 799 - 800
  • [32] MORE ON MIN-MAX ALLOCATION
    PORTEUS, EL
    YORMARK, JS
    MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09): : 502 - 507
  • [33] MIN-MAX INTERVAL CALCULUS
    JAHN, KU
    MATHEMATISCHE NACHRICHTEN, 1976, 71 : 267 - 272
  • [34] Min-max multiway cut
    Svitkina, Z
    Tardos, É
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 207 - 218
  • [35] SYNTHESIS OF MIN-MAX STRATEGIES
    GUTMAN, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (04) : 515 - 523
  • [36] A min-max theorem on tournaments
    Chen, Xujin
    Hu, Xiaodong
    Zang, Wenan
    SIAM JOURNAL ON COMPUTING, 2007, 37 (03) : 923 - 937
  • [37] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134
  • [38] Min-max kalman filtering
    Yaesh, I
    Shaked, U
    SYSTEMS & CONTROL LETTERS, 2004, 53 (3-4) : 217 - 228
  • [39] BOUNDS FOR MIN-MAX HEAPS
    HASHAM, A
    SACK, JR
    BIT, 1987, 27 (03): : 315 - 323
  • [40] On a min-max theorem of cacti
    Szigeti, Z
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 84 - 95