Min-max property in metric spaces with convex structure

被引:8
|
作者
Gabeleh, M. [1 ]
Kunzi, H. -P. A. [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Sch Math, Inst Res Fundamental Sci IPM, Dept Math, POB 19395-5746, Tehran, Iran
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
proximal normal structure; noncyclic relatively nonexpansive mapping; uniformly in every direction convex metric space; RELATIVELY NONEXPANSIVE-MAPPINGS; UNIFORMLY CONVEX; POINT THEOREM; MINIMAL SETS; PROXIMITY;
D O I
10.1007/s10474-018-0857-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of convex metric spaces, we introduce the two geometric notions of uniform convexity in every direction as well as sequential convexity. They are used to study a concept of proximal normal structure. We also consider the class of noncyclic relatively nonexpansive mappings and analyze the min-max property for such mappings. As an application of our main results we conclude with some best proximity pair theorems for noncyclic mappings.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 50 条
  • [21] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [22] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [23] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [24] A convex parameterization for solving constrained min-max problems with a quadratic cost
    Kerrigan, EC
    Alamo, T
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 2220 - 2221
  • [25] A Discrete Convex Min-Max Formula for Box-TDI Polyhedra
    Frank, Andras
    Murota, Kazuo
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) : 1026 - 1047
  • [26] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    4OR, 2006, 4 (4) : 347 - 350
  • [27] Structure pruning strategies for min-max modular network
    Yang, Y
    Lu, BL
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 646 - 651
  • [28] Min-max and max-min graph saturation parameters
    Sudha, S.
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 943 - 947
  • [29] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [30] On min-max cycle bases
    Galbiati, G
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 116 - 123