Min-max property in metric spaces with convex structure

被引:8
|
作者
Gabeleh, M. [1 ]
Kunzi, H. -P. A. [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Sch Math, Inst Res Fundamental Sci IPM, Dept Math, POB 19395-5746, Tehran, Iran
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
proximal normal structure; noncyclic relatively nonexpansive mapping; uniformly in every direction convex metric space; RELATIVELY NONEXPANSIVE-MAPPINGS; UNIFORMLY CONVEX; POINT THEOREM; MINIMAL SETS; PROXIMITY;
D O I
10.1007/s10474-018-0857-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of convex metric spaces, we introduce the two geometric notions of uniform convexity in every direction as well as sequential convexity. They are used to study a concept of proximal normal structure. We also consider the class of noncyclic relatively nonexpansive mappings and analyze the min-max property for such mappings. As an application of our main results we conclude with some best proximity pair theorems for noncyclic mappings.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 50 条
  • [1] Min-max property in metric spaces with convex structure
    M. Gabeleh
    H.-P. A. Künzi
    Acta Mathematica Hungarica, 2019, 157 : 173 - 190
  • [2] THE WEAK MIN-MAX PROPERTY IN BANACH SPACES
    Ouyang, Zhengyong
    Rasila, Antti
    Guan, Tiantian
    MATHEMATICA SCANDINAVICA, 2022, 128 (02) : 355 - 364
  • [3] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348
  • [4] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [5] First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
    Jordan, Michael I.
    Lin, Tianyi
    Vlatakis-Gkaragkounis, Emmanouil V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [6] John disks, the Apollonian metric, and min-max properties
    M. Huang
    S. Ponnusamy
    X. Wang
    Proceedings - Mathematical Sciences, 2010, 120 : 83 - 96
  • [7] A RECURSIVE ALGORITHM FOR A CLASS OF CONVEX MIN-MAX PROBLEMS
    SEKITANI, K
    TAMURA, A
    YAMAMOTO, Y
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1993, 10 (01) : 93 - 108
  • [8] John disks, the Apollonian metric, and min-max properties
    Huang, M.
    Ponnusamy, S.
    Wang, X.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (01): : 83 - 96
  • [9] Convex-Concave Min-Max Stackelberg Games
    Goktas, Denizalp
    Greenwald, Amy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Solving non convex Min-Max predictive controller
    Badreddine, Bouzouita
    Faouzi, Bouani
    Mekki, Ksouri
    2007 INFORMATION DECISION AND CONTROL, 2007, : 243 - 248