A new computational way to Monte Carlo global illumination

被引:0
|
作者
Xu, Q [1 ]
Liu, CH [1 ]
Zhang, S [1 ]
机构
[1] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
关键词
global illumination; Monte Carlo; random walk; importance sampling;
D O I
10.1117/12.561124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new Monte Carlo computational way for solving global illumination problem. In this way, plenty of unbiased estimators can be employed to enrich the solutions so as to lead to simple error control and to speed up the estimation. The implementation of a so-called potential tracing algorithm on the basis of the new scheme has been carried out. Results, which have been obtained by rendering test scenes, show that this new framework is promising.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [31] Monte Carlo techniques in computational stochastic mechanics
    J. E. Hurtado
    A. H. Barbat
    Archives of Computational Methods in Engineering, 1998, 5 : 3 - 29
  • [32] Monte Carlo techniques in computational stochastic mechanics
    Hurtado, JE
    Barbat, AH
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1998, 5 (01) : 3 - 29
  • [33] Monte Carlo scalable algorithms for Computational Finance
    Alexandrov, V. N.
    Gonzalez Martel, Christian
    Strassburg, J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 1708 - 1715
  • [34] Probabilistic illumination-aware filtering for Monte Carlo rendering
    Doidge, Ian C.
    Jones, Mark W.
    VISUAL COMPUTER, 2013, 29 (6-8): : 707 - 716
  • [35] Assessment of line illumination for hyperspectral imaging by a Monte Carlo simulation
    Stergar, Jost
    Milanic, Matija
    DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VI, 2017, 10412
  • [36] Probabilistic illumination-aware filtering for Monte Carlo rendering
    Ian C. Doidge
    Mark W. Jones
    The Visual Computer, 2013, 29 : 707 - 716
  • [37] Monte Carlo normal mode following: A new way to study ion channel gating
    Jordan, Peter C.
    BIOPHYSICAL JOURNAL, 2007, : 34A - 34A
  • [38] New Brownian bridge construction in quasi-Monte Carlo methods for computational finance
    Lin, Junyi
    Wang, Xiaoqun
    JOURNAL OF COMPLEXITY, 2008, 24 (02) : 109 - 133
  • [39] Monte Carlo vs. Fuzzy Monte Carlo Simulation for Uncertainty and Global Sensitivity Analysis
    Kim, Young-Jin
    SUSTAINABILITY, 2017, 9 (04):
  • [40] A SIMPLE NEW WAY TO HELP SPEED UP MONTE-CARLO CONVERGENCE-RATES - ENERGY-SCALED DISPLACEMENT MONTE-CARLO
    GOLDMAN, S
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (08): : 3938 - 3947