Monte Carlo techniques in computational stochastic mechanics

被引:234
|
作者
Hurtado, JE [1 ]
Barbat, AH
机构
[1] Univ Nacl Colombia, Fac Ingn & Arquitectura, Manizales, Colombia
[2] Univ Politecn Cataluna, Dept Resistencia Mat & Estructuras Ingn, Barcelona 08034, Spain
关键词
D O I
10.1007/BF02736747
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A state of the art on simulation methods in stochastic structural analysis is presented. The purpose of the paper is to review some of the different methods available for analysing the effects of randomness of models and data in structural analysis. While most of these techniques can be grouped under the general name of Monte Carlo methods, the several published algorithms are more suitable to some objectives of analysis than to others in each case. These objectives have been classified into the foolowing cathegories: (1), The Statistical Description of the structural scattering, a primary analysis in which the uncertain parameters are treated as random variables; (2) The consideration of the spatial variability of the random parameters, that must then be modelled as Random Fields (Stochastic Finite Elements); (3) The advanced Monte Carlo methods for calculating the usually very low failure probabilities (Reliability Analysis) and, (4), a deterministic technique that depart from the random nature of the above methods, but which can be linked with them in some cases, known as the Response Surface Method. All of these techniques are critically examined and discussed. The concluding remarks point out some research needs in the field from the authors' point of view.
引用
收藏
页码:3 / 29
页数:27
相关论文
共 50 条
  • [1] Monte Carlo techniques in computational stochastic mechanics
    J. E. Hurtado
    A. H. Barbat
    Archives of Computational Methods in Engineering, 1998, 5 : 3 - 29
  • [2] Non-Monte Carlo formulations and computational techniques for the stochastic non-linear Schrodinger equation
    Demir, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) : 148 - 171
  • [3] Computational Complexity of Stochastic Programming: Monte Carlo Sampling Approach
    Shapiro, Alexander
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2979 - 2995
  • [4] On Stochastic Error and Computational Efficiency of the Markov Chain Monte Carlo Method
    Li, Jun
    Vignal, Philippe
    Sun, Shuyu
    Calo, Victor M.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (02) : 467 - 490
  • [5] Monte Carlo bounding techniques for determining solution quality in stochastic programs
    Mak, Wai-Kei
    Morton, David P.
    Wood, R. Kevin
    Operations Research Letters, 1999, 24 (01): : 47 - 56
  • [6] Computational Techniques and Strategies for Monte Carlo Thermodynamic Calculations, with Applications to Nanoclusters
    Topper, Robert Q.
    Freeman, David L.
    Bergin, Denise
    LaMarche, Keirnan R.
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 19, 2003, 19 : 1 - 41
  • [7] Monte Carlo bounding techniques for determining solution quality in stochastic programs
    Mak, WK
    Morton, DP
    Wood, RK
    OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) : 47 - 56
  • [8] Stochastic comparisons of stratified sampling techniques for some Monte Carlo estimators
    Goldstein, Larry
    Rinott, Yosef
    Scarsini, Marco
    BERNOULLI, 2011, 17 (02) : 592 - 608
  • [9] Monte carlo techniques
    S. Youssef
    The European Physical Journal C - Particles and Fields, 2000, 15 (1-4): : 202 - 204
  • [10] MONTE CARLO TECHNIQUES
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, 38 (09) : 485 - 487