A new computational way to Monte Carlo global illumination

被引:0
|
作者
Xu, Q [1 ]
Liu, CH [1 ]
Zhang, S [1 ]
机构
[1] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
关键词
global illumination; Monte Carlo; random walk; importance sampling;
D O I
10.1117/12.561124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new Monte Carlo computational way for solving global illumination problem. In this way, plenty of unbiased estimators can be employed to enrich the solutions so as to lead to simple error control and to speed up the estimation. The implementation of a so-called potential tracing algorithm on the basis of the new scheme has been carried out. Results, which have been obtained by rendering test scenes, show that this new framework is promising.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [41] Monte Carlo measurement of the global persistence exponent
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (93):
  • [42] Monte Carlo measurement of the global persistence exponent
    Universität - GH Siegen, D-57068 Siegen, Germany
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233 (1-2): : 93 - 98
  • [43] Global multipath Monte Carlo algorithms for radiosity
    Sbert, M
    Pueyo, X
    Neumann, L
    Pergathofer, W
    VISUAL COMPUTER, 1996, 12 (02): : 47 - 61
  • [44] Monte Carlo measurement of the global persistence exponent
    Schulke, L
    Zheng, B
    PHYSICS LETTERS A, 1997, 233 (1-2) : 93 - 98
  • [45] Computational aspects of sequential Monte Carlo filter and smoother
    Kitagawa, Genshiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (03) : 443 - 471
  • [46] REMARKS ON GLOBAL MONTE-CARLO ALGORITHMS
    GAUSTERER, H
    SALMHOFER, M
    PHYSICAL REVIEW D, 1989, 40 (08): : 2723 - 2726
  • [47] Computational aspects of the local iterative Monte Carlo technique
    Jakumeit, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 665 - 673
  • [48] A Multifidelity Monte Carlo Method for Realistic Computational Budgets
    Gruber, Anthony
    Gunzburger, Max
    Ju, Lili
    Wang, Zhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)
  • [49] Vector Monte Carlo algorithms with finite computational cost
    Medvedev, Ilia N.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2017, 32 (06) : 359 - 370
  • [50] A Multifidelity Monte Carlo Method for Realistic Computational Budgets
    Anthony Gruber
    Max Gunzburger
    Lili Ju
    Zhu Wang
    Journal of Scientific Computing, 2023, 94