Improving Accuracy of Android Malware Detection with Lightweight Contextual Awareness

被引:24
|
作者
Allen, Joey [1 ]
Landen, Matthew [1 ]
Chaba, Sanya [1 ]
Ji, Yang [1 ]
Chung, Simon Pak Ho [1 ]
Lee, Wenke [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Malware detection; Android Security;
D O I
10.1145/3274694.3274744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Android malware detection, recent work has shown that using contextual information of sensitive API invocation in the modeling of applications is able to improve the classification accuracy. However, the improvement brought by this context-awareness varies depending on how this information is used in the modeling. In this paper, we perform a comprehensive study on the effectiveness of using the contextual information in prior state-of-the-art detection systems. We find that this information has been "over-used" such that a large amount of non-essential metadata built into the models weakens the generalizability and longevity of the model, thus finally affects the detection accuracy. On the other hand, we find that the entrypoint of API invocation has the strongest impact on the classification correctness, which can further improve the accuracy if being properly captured. Based on this finding, we design and implement a lightweight, circumstance-aware detection system, named "PIKADROID" that only uses the API invocation and its entrypoint in the modeling. For extracting the meaningful entrypoints, PIKADROID applies a set of static analysis techniques to extract and sanitize the reachable entrypoints of a sensitive API, then constructs a frequency model for classification decision. In the evaluation, we show that this slim model significantly improves the detection accuracy on a data set of 23,631 applications by achieving an f-score of 97.41%, while maintaining a false positive rating of 0.96%.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 50 条
  • [41] A Comparison of Features for Android Malware Detection
    Leeds, Matthew
    Keffeler, Miclain
    Atkison, Travis
    PROCEEDINGS OF THE SOUTHEAST CONFERENCE ACM SE'17, 2017, : 63 - 68
  • [42] Android Malware Detection & Protection: A Survey
    Arshad, Saba
    Khan, Abid
    Shah, Munam Ali
    Ahmed, Mansoor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (02) : 463 - 475
  • [43] A pragmatic android malware detection procedure
    Palumbo, Paolo
    Sayfullina, Luiza
    Komashinskiy, Dmitriy
    Eirola, Emil
    Karhunen, Juha
    COMPUTERS & SECURITY, 2017, 70 : 689 - 701
  • [44] Runtime Detection Framework for Android Malware
    Kim, TaeGuen
    Kang, BooJoong
    Im, Eul Gyu
    MOBILE INFORMATION SYSTEMS, 2018, 2018
  • [45] A framework for Android Malware detection and classification
    Murtaz, Muhammad
    Azwar, Hassan
    Ali, Syed Baqir
    Rehman, Saad
    2018 5TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING TECHNOLOGIES AND APPLIED SCIENCES (IEEE ICETAS), 2018,
  • [46] A Hybrid Detection Method for Android Malware
    Fang, Qi
    Yang, Xiaohui
    Ji, Ce
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2127 - 2132
  • [47] MADLIRA: A Tool for Android Malware Detection
    Khanh Huu The Dam
    Touili, Tayssir
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 670 - 675
  • [48] Deep Android Malware Detection and Classification
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1677 - 1683
  • [49] Feature importance in Android malware detection
    Kouliaridis, Vasileios
    Kambourakis, Georgios
    Peng, Tao
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1450 - 1455
  • [50] An Android malware static detection model
    Yang H.-Y.
    Xu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (02): : 564 - 570