Improving Accuracy of Android Malware Detection with Lightweight Contextual Awareness

被引:24
|
作者
Allen, Joey [1 ]
Landen, Matthew [1 ]
Chaba, Sanya [1 ]
Ji, Yang [1 ]
Chung, Simon Pak Ho [1 ]
Lee, Wenke [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Malware detection; Android Security;
D O I
10.1145/3274694.3274744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Android malware detection, recent work has shown that using contextual information of sensitive API invocation in the modeling of applications is able to improve the classification accuracy. However, the improvement brought by this context-awareness varies depending on how this information is used in the modeling. In this paper, we perform a comprehensive study on the effectiveness of using the contextual information in prior state-of-the-art detection systems. We find that this information has been "over-used" such that a large amount of non-essential metadata built into the models weakens the generalizability and longevity of the model, thus finally affects the detection accuracy. On the other hand, we find that the entrypoint of API invocation has the strongest impact on the classification correctness, which can further improve the accuracy if being properly captured. Based on this finding, we design and implement a lightweight, circumstance-aware detection system, named "PIKADROID" that only uses the API invocation and its entrypoint in the modeling. For extracting the meaningful entrypoints, PIKADROID applies a set of static analysis techniques to extract and sanitize the reachable entrypoints of a sensitive API, then constructs a frequency model for classification decision. In the evaluation, we show that this slim model significantly improves the detection accuracy on a data set of 23,631 applications by achieving an f-score of 97.41%, while maintaining a false positive rating of 0.96%.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 50 条
  • [31] Improving the Detection Accuracy of Unknown Malware by Partitioning the Executables in Groups
    Sharma, Ashu
    Sahay, Sanjay K.
    Kumar, Abhishek
    ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES, 2016, 452 : 421 - 431
  • [32] Improving Android Malware Detection with Entropy Bytecode-to-Image Encoding Framework
    Makkawy, Saleh J.
    Alblwi, Abdalrahman H.
    De Lucia, Michael J.
    Barner, Kenneth E.
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [33] Ultra-lightweight Malware Detection of Android Using 2-level Machine Learning
    Ma, Li
    Wang, Xiaolei
    Yang, Yuexiang
    He, Jie
    2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2016, : 729 - 733
  • [34] GSEDroid: GNN-based Android malware detection framework using lightweight semantic embedding
    Gu, Jintao
    Zhu, Hongliang
    Han, Zewei
    Li, Xiangyu
    Zhao, Jianjin
    COMPUTERS & SECURITY, 2024, 140
  • [35] A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps
    Chimeleze, Collins
    Jamil, Norziana
    Alturki, Nazik
    Zain, Zuhaira Muhammad
    EGYPTIAN INFORMATICS JOURNAL, 2024, 28
  • [36] Intelligent Approach for Android Malware Detection
    Abdulla, Shubair
    Altaher, Altyeb
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (08): : 2964 - 2983
  • [37] Continuous Learning for Android Malware Detection
    Chen, Yizheng
    Ding, Zhoujie
    Wagner, David
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 1127 - 1144
  • [38] A Survey on Android Malware Detection Techniques
    Riasat, Rubata
    Sakeena, Muntaha
    Wang, Chong
    Sadiq, Abdul Hannan
    Wang, Yong-ji
    INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND NETWORK ENGINEERING (WCNE 2016), 2016,
  • [39] Characterization of Malware Detection on Android Application
    Hein, Chit La Pyae Myo
    Myo, Khin Mar
    GENETIC AND EVOLUTIONARY COMPUTING, VOL I, 2016, 387 : 113 - 124
  • [40] Category Based Malware Detection for Android
    Grampurohit, Vijayendra
    Kumar, Vijay
    Rawat, Sanjay
    Rawat, Shatrunjay
    SECURITY IN COMPUTING AND COMMUNICATIONS, 2014, 467 : 239 - 249