Improving Accuracy of Android Malware Detection with Lightweight Contextual Awareness

被引:24
|
作者
Allen, Joey [1 ]
Landen, Matthew [1 ]
Chaba, Sanya [1 ]
Ji, Yang [1 ]
Chung, Simon Pak Ho [1 ]
Lee, Wenke [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Malware detection; Android Security;
D O I
10.1145/3274694.3274744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Android malware detection, recent work has shown that using contextual information of sensitive API invocation in the modeling of applications is able to improve the classification accuracy. However, the improvement brought by this context-awareness varies depending on how this information is used in the modeling. In this paper, we perform a comprehensive study on the effectiveness of using the contextual information in prior state-of-the-art detection systems. We find that this information has been "over-used" such that a large amount of non-essential metadata built into the models weakens the generalizability and longevity of the model, thus finally affects the detection accuracy. On the other hand, we find that the entrypoint of API invocation has the strongest impact on the classification correctness, which can further improve the accuracy if being properly captured. Based on this finding, we design and implement a lightweight, circumstance-aware detection system, named "PIKADROID" that only uses the API invocation and its entrypoint in the modeling. For extracting the meaningful entrypoints, PIKADROID applies a set of static analysis techniques to extract and sanitize the reachable entrypoints of a sensitive API, then constructs a frequency model for classification decision. In the evaluation, we show that this slim model significantly improves the detection accuracy on a data set of 23,631 applications by achieving an f-score of 97.41%, while maintaining a false positive rating of 0.96%.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 50 条
  • [21] Improving Malware Detection Accuracy by Extracting Icon Information
    Silva, Pedro
    Akhavan-Masouleh, Sepehr
    Li, Li
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 408 - 411
  • [22] Machine learning models and dimensionality reduction for improving the Android malware detection
    Moran, Pablo
    Robles-Gomez, Antonio
    Duque, Andres
    Tobarra, Llanos
    Pastor-Vargas, Rafael
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [24] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [25] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [26] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [27] Android malware detection model
    Yang H.
    Na Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51
  • [28] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    COMPUTERS & SECURITY, 2019, 87
  • [29] Lightweight On-Device Detection of Android Malware Based on the Koodous Platform and Machine Learning
    Krzyszton, Mateusz
    Bok, Bartosz
    Lew, Marcin
    Sikora, Andrzej
    SENSORS, 2022, 22 (17)
  • [30] FEdroid: a lightweight and interpretable machine learning-based android malware detection system
    Huang, Hong
    Huang, Weitao
    Zhou, Yinghang
    Luo, Wengang
    Wang, Yunfei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):