Homogenization of nonlinear elliptic systems in nonreflexive Musielak-Orlicz spaces

被引:5
|
作者
Bulicek, Miroslav [1 ]
Gwiazda, Piotr [2 ,3 ]
Kalousek, Martin [2 ]
Swierczewska-Gwiazda, Agnieszka [3 ]
机构
[1] Charles Univ Prague, Math Inst, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
[2] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
nonlinear elliptic problems; Musielak-Orlicz spaces; periodic homogenization; two-scale convergence method; BOUNDARY-VALUE-PROBLEMS; NON-NEWTONIAN FLUIDS; EQUATIONS; GROWTH;
D O I
10.1088/1361-6544/aaf259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the homogenization process for families of strongly nonlinear elliptic systems with the homogeneous Dirichlet boundary conditions. The growth and the coercivity of the elliptic operator is assumed to be indicated by a general inhomogeneous anisotropic N-function M, which may also depend on the spatial variable, i.e. the homogenization process will change the underlying function spaces and the nonlinear elliptic operator at each step. The problem of homogenization of nonlinear elliptic systems has been solved for the L-P-setting with restrictions either on constant exponent or variable exponent that is assumed to be additionally log-Holder continuous. These results correspond to a very particular case of N-functions satisfying both Delta(2) and del(2)-conditions. We show that for general M satisfying a condition of log-Holder type continuity, one can provide a rather general theory without any assumption on the validity of neither Delta(2) nor del(2)-conditions.
引用
收藏
页码:1073 / 1110
页数:38
相关论文
共 50 条
  • [31] ISOMETRIES OF MUSIELAK-ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM
    KAMINSKA, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1475 - 1486
  • [32] Sobolev embeddings in Musielak-Orlicz spaces
    Cianchi, Andrea
    Diening, Lars
    ADVANCES IN MATHEMATICS, 2024, 447
  • [33] Existence of solutions for a class of nonlinear elliptic problems with measure data in the setting of Musielak-Orlicz -Sobolev spaces
    Benkirane, Abdelmoujib
    El Amarty, Nourdine
    El Haji, Badr
    El Moumni, Mostafa
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 647 - 672
  • [34] Lagrange Multiplier Rule to a Nonlinear Eigenvalue Problem in Musielak-Orlicz Spaces
    Khaled, Mohammed
    Rhoudaf, Mohamed
    Sabiki, Hajar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) : 134 - 157
  • [35] Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces
    Manna, Atanu
    Srivastava, P. D.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 471 - 486
  • [36] ISOMETRIES OF MUSIELAK-ORLICZ SPACES .2.
    JAMISON, JE
    KAMINSKA, A
    LIN, PK
    STUDIA MATHEMATICA, 1993, 104 (01) : 75 - 89
  • [37] Rothe's method for a nonlinear parabolic problem in Musielak-Orlicz spaces
    Mabdaoui, M.
    Essafi, L.
    Rhoudaf, M.
    APPLICABLE ANALYSIS, 2021, 100 (02) : 428 - 463
  • [38] WEIGHTED COMPOSITION OPERATORS ON MUSIELAK-ORLICZ SPACES
    Raj, Kuldip
    Sharma, Ajay K.
    Kumar, Anil
    ARS COMBINATORIA, 2012, 107 : 431 - 439
  • [39] Capacity for potentials of functions in Musielak-Orlicz spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6231 - 6243
  • [40] Pointwise multipliers of Musielak-Orlicz spaces and factorization
    Lesnik, Karol
    Tomaszewski, Jakub
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (02): : 489 - 509