Homogenization of nonlinear elliptic systems in nonreflexive Musielak-Orlicz spaces

被引:5
|
作者
Bulicek, Miroslav [1 ]
Gwiazda, Piotr [2 ,3 ]
Kalousek, Martin [2 ]
Swierczewska-Gwiazda, Agnieszka [3 ]
机构
[1] Charles Univ Prague, Math Inst, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
[2] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
nonlinear elliptic problems; Musielak-Orlicz spaces; periodic homogenization; two-scale convergence method; BOUNDARY-VALUE-PROBLEMS; NON-NEWTONIAN FLUIDS; EQUATIONS; GROWTH;
D O I
10.1088/1361-6544/aaf259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the homogenization process for families of strongly nonlinear elliptic systems with the homogeneous Dirichlet boundary conditions. The growth and the coercivity of the elliptic operator is assumed to be indicated by a general inhomogeneous anisotropic N-function M, which may also depend on the spatial variable, i.e. the homogenization process will change the underlying function spaces and the nonlinear elliptic operator at each step. The problem of homogenization of nonlinear elliptic systems has been solved for the L-P-setting with restrictions either on constant exponent or variable exponent that is assumed to be additionally log-Holder continuous. These results correspond to a very particular case of N-functions satisfying both Delta(2) and del(2)-conditions. We show that for general M satisfying a condition of log-Holder type continuity, one can provide a rather general theory without any assumption on the validity of neither Delta(2) nor del(2)-conditions.
引用
收藏
页码:1073 / 1110
页数:38
相关论文
共 50 条
  • [21] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [22] Musielak-Orlicz Campanato spaces and applications
    Liang, Yiyu
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 307 - 322
  • [23] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [24] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [25] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [26] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [27] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [28] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [29] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    ScienceChina(Mathematics), 2019, 62 (08) : 1567 - 1584
  • [30] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041