Exploiting salient semantic analysis for information retrieval

被引:12
|
作者
Luo, Jing [1 ,2 ,3 ]
Meng, Bo [3 ]
Quan, Changqin [4 ]
Tu, Xinhui [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
[4] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
Information retrieval; language model; salient semantic analysis; Wikipedia; document model; WIKIPEDIA;
D O I
10.1080/17517575.2015.1080301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 50 条
  • [41] Improving information retrieval through correspondence analysis instead of latent semantic analysis
    Qi, Qianqian
    Hessen, David J.
    van der Heijden, Peter G. M.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (01) : 209 - 230
  • [42] THE ROLE OF SEMANTIC INFORMATION IN EPISODIC RETRIEVAL
    MCKOON, G
    RATCLIFF, R
    DELL, GS
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 1985, 11 (04) : 742 - 751
  • [43] Information visualization and retrieval in the semantic web
    Morato, Jorge
    Sanchez-Cuadrado, Sonia
    Ruiz-Robles, Alejandro
    Moreiro-Gonzalez, Jose-Antonio
    PROFESIONAL DE LA INFORMACION, 2014, 23 (03): : 319 - 329
  • [44] Semantic Information Retrieval in a Distributed Environment
    Iqbal, Ahmad Ali
    Ott, Maximilan
    Seneviratne, Aruna
    2009 6TH IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE, VOLS 1 AND 2, 2009, : 786 - +
  • [45] Towards Semantic Evaluation of Information Retrieval
    Wasilewski, Piotr
    INTELLIGENT TOOLS FOR BUILDING A SCIENTIFIC INFORMATION PLATFORM, 2012, 390 : 107 - 120
  • [46] Information retrieval based on semantic networks
    Gerick, T
    NFD INFORMATION-WISSENSCHAFT UND PRAXIS, 1999, 50 (04): : 205 - 209
  • [47] Exploiting Semantic and Public Prior Information in MonoSLAM
    Ye, Chenxi
    Wang, Yiduo
    Lu, Ziwen
    Gilitschenski, Igor
    Parsley, Martin
    Julier, Simon J.
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4936 - 4941
  • [48] Semantic refinement for web Information Retrieval
    Deco, C
    Bender, C
    Saer, J
    Chiari, M
    Motz, R
    Third Latin American Web Congress, Proceedings, 2005, : 106 - 110
  • [49] Information retrieval with semantic memory model
    Szymanski, Julian
    Duch, Wlodzislaw
    COGNITIVE SYSTEMS RESEARCH, 2012, 14 (01): : 84 - 100
  • [50] Information retrieval model for the semantic search
    Wang, Li
    Li, Ming
    Journal of Computational Information Systems, 2007, 3 (04): : 1359 - 1366