Exploiting salient semantic analysis for information retrieval

被引:12
|
作者
Luo, Jing [1 ,2 ,3 ]
Meng, Bo [3 ]
Quan, Changqin [4 ]
Tu, Xinhui [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
[4] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
Information retrieval; language model; salient semantic analysis; Wikipedia; document model; WIKIPEDIA;
D O I
10.1080/17517575.2015.1080301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 50 条
  • [21] Biomedical Semantic Information Retrieval
    Lopez-Ubeda, Pilar
    Carlos Diaz-Galiano, Manuel
    Montejo-Raez, Arturo
    Martinez-Santiago, Fernando
    Andreu-Marin, Alberto
    Teresa Martin-Valdivia, M.
    Urena Lopez, L. Alfonso
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2018, (61): : 189 - 192
  • [22] Advances in Semantic Information Retrieval
    Klyuev, Vitaly
    Mozgovoy, Maxim
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2011, 35 (04): : 399 - 400
  • [23] Information retrieval by semantic similarity
    Hliaoutakis, Angelos
    Varelas, Giannis
    Voutsakis, Epimenidis
    Petrakis, Euripides G. M.
    Milios, Evangelos
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2006, 2 (03) : 55 - 73
  • [24] SEMANTIC ASPECTS OF INFORMATION RETRIEVAL
    BROADUS, RN
    ETC-REVIEW OF GENERAL SEMANTICS, 1969, 26 (04): : 433 - 439
  • [25] CONTEXT IN SEMANTIC INFORMATION RETRIEVAL
    DAPOLITO, F
    BARKER, D
    WIANT, J
    PSYCHONOMIC SCIENCE, 1971, 24 (04): : 180 - 182
  • [26] An Approach to Semantic Information Retrieval
    Li, Huiying
    2012 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICE COMPUTING (CSC), 2012, : 161 - 167
  • [27] Semantic Private Information Retrieval
    Vithana, Sajani
    Banawan, Karim
    Ulukus, Sennur
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (04) : 2635 - 2652
  • [28] Exploiting informal communities in information retrieval
    Dichev, C
    KNOWLEDGE-BASED SOFTWARE ENGINEERING, 2002, 80 : 195 - 204
  • [29] Exploiting Wikipedia for Information Retrieval Tasks
    Shapira, Bracha
    Ofek, Nir
    Makarenkov, Victor
    SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 1137 - 1140
  • [30] Exploiting the semantic graph for the representation and retrieval of medical documents
    Zhao, Qing
    Kang, Yangyang
    Li, Jianqiang
    Wang, Dan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 101 : 39 - 50