Exploiting salient semantic analysis for information retrieval

被引:12
|
作者
Luo, Jing [1 ,2 ,3 ]
Meng, Bo [3 ]
Quan, Changqin [4 ]
Tu, Xinhui [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
[4] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
Information retrieval; language model; salient semantic analysis; Wikipedia; document model; WIKIPEDIA;
D O I
10.1080/17517575.2015.1080301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 50 条
  • [31] Intelligent retrieval of digital resources by exploiting their semantic context
    Surányi, GM
    Nagypál, G
    Schmidt, A
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2004: COOPIS, DOA, AND ODBASE, PT 1, PROCEEDINGS, 2004, 3290 : 705 - 723
  • [32] Intelligent semantic information retrieval in medical pattern cognitive analysis
    Ogiela, MR
    Tadeusiewicz, R
    Ogiela, L
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 852 - 857
  • [33] Analysis and development of latent semantic indexing techniques for information retrieval
    Bottello, M.
    Data Mining VII: Data, Text and Web Mining and Their Business Applications, 2006, 37 : 193 - 202
  • [34] A Quantitative Analysis of Semantic Information Retrieval Research Progress in China
    Wang, Xiaoyue
    Bai, Rujiang
    Kang, Liyun
    SOFTWARE ENGINEERING, BUSINESS CONTINUITY, AND EDUCATION, 2011, 257 : 36 - 45
  • [35] Automatic information retrieval with semantic analysis for green building evaluation
    Du, Qiang
    Li, Yaxian
    Xu, Sheng
    Yan, Yunqing
    Zhang, Yani
    INTERNATIONAL CONFERENCE ON SMART TRANSPORTATION AND CITY ENGINEERING 2021, 2021, 12050
  • [36] Efficient storage and retrieval of probabilistic latent semantic information for information retrieval
    Park, Laurence A. F.
    Ramamohanarao, Kotagiri
    VLDB JOURNAL, 2009, 18 (01): : 141 - 155
  • [37] Efficient storage and retrieval of probabilistic latent semantic information for information retrieval
    Laurence A. F. Park
    Kotagiri Ramamohanarao
    The VLDB Journal, 2009, 18 : 141 - 155
  • [38] Semantic consistent adversarial cross-modal retrieval exploiting semantic similarity
    Weihua Ou
    Ruisheng Xuan
    Jianping Gou
    Quan Zhou
    Yongfeng Cao
    Multimedia Tools and Applications, 2020, 79 : 14733 - 14750
  • [39] Semantic consistent adversarial cross-modal retrieval exploiting semantic similarity
    Ou, Weihua
    Xuan, Ruisheng
    Gou, Jianping
    Zhou, Quan
    Cao, Yongfeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 14733 - 14750
  • [40] Improving information retrieval through correspondence analysis instead of latent semantic analysis
    Qianqian Qi
    David J. Hessen
    Peter G. M. van der Heijden
    Journal of Intelligent Information Systems, 2024, 62 : 209 - 230