Auditory Brainstem Response Detection Using Machine Learning: A Comparison With Statistical Detection Methods

被引:9
|
作者
McKearney, Richard M. [1 ]
Bell, Steven L. [1 ]
Chesnaye, Michael A. [1 ]
Simpson, David M. [1 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England
来源
EAR AND HEARING | 2022年 / 43卷 / 03期
关键词
Auditory brainstem response; Evoked potentials; Objective detection methods; Machine learning; OBJECTIVE DETECTION; EVOKED-POTENTIALS; CLASSIFICATION; TESTS; TIME;
D O I
10.1097/AUD.0000000000001151
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Objectives: The primary objective of this study was to train and test machine learning algorithms to be able to detect accurately whether EEG data contains an auditory brainstem response (ABR) or not and recommend suitable machine learning methods. In addition, the performance of the best machine learning algorithm was compared with that of prominent statistical detection methods. Design: Four machine learning algorithms were trained and evaluated using nested k-fold cross-validation: a random forest, a convolutional long short-term memory network, a stacked ensemble, and a multilayer perceptron. The best method was evaluated on a separate test set and compared with conventional detection methods: Fsp, Fmp, q-sample uniform scores test, and Hotelling's T-2 test. The models were trained and tested on simulated data that were generated based on recorded ABRs collected from 12 normal-hearing participants and no-stimulus EEG data from 15 participants. Simulation allowed the ground truth of the data ("response present" or "response absent") to be known. Results: The sensitivity of the best machine learning algorithm, a stacked ensemble, was significantly greater than that of the conventional detection methods evaluated. The stacked ensemble, evaluated using a bootstrap approach, consistently achieved a high and stable level of specificity across ensemble sizes. Conclusions: The stacked ensemble model presented was more effective than conventional statistical ABR detection methods and the alternative machine learning approaches tested. The stacked ensemble detection method may have potential both in automated ABR screening devices as well as in evoked potential software, assisting clinicians in making decisions regarding a patient's ABR threshold. Further assessment of the model's generalizability using a large cohort of subject recorded data, including participants of different ages and hearing status, is a recommended next step.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [41] Detection of Driver Cognitive Distraction Using Machine Learning Methods
    Misra, Apurva
    Samuel, Siby
    Cao, Shi
    Shariatmadari, Khatereh
    IEEE ACCESS, 2023, 11 : 18000 - 18012
  • [42] Detection and Prevention of Professional Burnout Using Machine Learning Methods
    Zhernova, Polina
    Bodyanskiy, Yevgeniy
    Yatsenko, Bohdan
    Zavgorodnii, Igor
    15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 218 - 221
  • [43] Epileptic seizure detection using hybrid machine learning methods
    Abdulhamit Subasi
    Jasmin Kevric
    M. Abdullah Canbaz
    Neural Computing and Applications, 2019, 31 : 317 - 325
  • [44] Evaluation of acoustic detection of UAVs using machine learning methods
    Borghgraef, A.
    Vandewal, M.
    COUNTERTERRORISM, CRIME FIGHTING, FORENSICS, AND SURVEILLANCE TECHNOLOGIES III, 2019, 11166
  • [45] Epileptic seizure detection using hybrid machine learning methods
    Subasi, Abdulhamit
    Kevric, Jasmin
    Canbaz, M. Abdullah
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (01): : 317 - 325
  • [46] Detection and classification of darknet traffic using machine learning methods
    Ugurlu, Mesut
    Dogru, Ibrahim Alper
    Arslan, Recep Sinan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (03): : 1737 - 1746
  • [47] Human Fall Detection Using Machine Learning Methods: A Survey
    Singh, Komal
    Rajput, Akshay
    Sharma, Sachin
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2020, 5 (01) : 161 - 180
  • [48] A Survey on Mobile Malware Detection Methods using Machine Learning
    Kambar, Mina Esmail Zadeh Nojoo
    Esmaeilzadeh, Armin
    Kim, Yoohwan
    Taghva, Kazem
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 215 - 221
  • [49] Detection of Cyberbullying in Social Networks Using Machine Learning Methods
    Altay, Elif Varol
    Alatas, Bilal
    2018 INTERNATIONAL CONGRESS ON BIG DATA, DEEP LEARNING AND FIGHTING CYBER TERRORISM (IBIGDELFT), 2018, : 87 - 91
  • [50] Fake News Detection Using Machine Learning Ensemble Methods
    Ahmad, Iftikhar
    Yousaf, Muhammad
    Yousaf, Suhail
    Ahmad, Muhammad Ovais
    COMPLEXITY, 2020, 2020