Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables

被引:16
|
作者
Thimoteo, Lucas M. [1 ]
Vellasco, Marley M. [1 ]
Amaral, Jorge [2 ]
Figueiredo, Karla [3 ]
Yokoyama, Catia Lie [4 ]
Marques, Erito [2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Engn Elect, Rio De Janeiro, RJ, Brazil
[2] Univ Estado Rio de Janeiro, Programa Posgrad Engn Eletron PEL, Rio De Janeiro, RJ, Brazil
[3] Univ Estado Rio de Janeiro, Programa Posgrad Telessaude, Programa Posgrad Ciencias Computacionais CCOMP, Rio De Janeiro, RJ, Brazil
[4] Univ Estadual Londrina, Dept Biol Geral, Londrina, Parana, Brazil
关键词
COVID-19; diagnosis; Machine learning; Explainability; Interpretability; Shapley additive explanations; Explainable boosting machine; CYTOKINE STORM; SARS-COV-2;
D O I
10.1007/s40313-021-00858-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes an explainable artificial intelligence approach to help diagnose COVID-19 patients based on blood test and pathogen variables. Two glass-box models, logistic regression and explainable boosting machine, and two black-box models, random forest and support vector machine, were used to assess the disease diagnosis. Shapley additive explanations were used to explain predictions for the black-box models, while glass-box models feature importance brought insights into the most relevant features. All global explanations show the eosinophils and leukocytes, white blood cells are among the essential features to help diagnose the COVID-19. Moreover, the best model obtained an AUC of 0.87.
引用
收藏
页码:625 / 644
页数:20
相关论文
共 50 条
  • [41] Explainable Artificial Intelligence Approach for the Early Prediction of Ventilator Support and Mortality in COVID-19 Patients
    Aslam, Nida
    COMPUTATION, 2022, 10 (03)
  • [42] Behavioral analysis of medical data COVID-19 through artificial intelligence
    Nunez, Antonio alvarez
    Diaz, Maria del Carmen Santiago
    Vazquez, Ana Claudia Zenteno
    Marcial, Judith Perez
    Linares, Gustavo Trinidad Rubin
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2024, 15 (05): : 212 - 217
  • [43] Computed Tomography-based Artificial Intelligence System in the Diagnosis of COVID-19
    Kahya, Y.
    Orhan, K.
    Yan, H.
    Coruh, A. Gursoy
    Liu, P.
    Cangir, A. Kayi
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S111 - S112
  • [44] RESEARCH AND APPLICATION ADVANCES OF ARTIFICIAL INTELLIGENCE IN DIAGNOSIS AND EPIDEMIC PREDICTION OF COVID-19
    Liu, Jinping
    Wu, Juanjuan
    Gong, Subo
    Hu, Waiguang
    Zhou, Ying
    Hu, Shanshan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (06)
  • [45] Data science and the role of Artificial Intelligence in achieving the fast diagnosis of Covid-19
    Vinod, Dasari Naga
    Prabaharan, S. R. S.
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [46] Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence
    Bai, Xiang
    Wang, Hanchen
    Ma, Liya
    Xu, Yongchao
    Gan, Jiefeng
    Fan, Ziwei
    Yang, Fan
    Ma, Ke
    Yang, Jiehua
    Bai, Song
    Shu, Chang
    Zou, Xinyu
    Huang, Renhao
    Zhang, Changzheng
    Liu, Xiaowu
    Tu, Dandan
    Xu, Chuou
    Zhang, Wenqing
    Wang, Xi
    Chen, Anguo
    Zeng, Yu
    Yang, Dehua
    Wang, Ming-Wei
    Holalkere, Nagaraj
    Halin, Neil J.
    Kamel, Ihab R.
    Wu, Jia
    Peng, Xuehua
    Wang, Xiang
    Shao, Jianbo
    Mongkolwat, Pattanasak
    Zhang, Jianjun
    Liu, Weiyang
    Roberts, Michael
    Teng, Zhongzhao
    Beer, Lucian
    Sanchez, Lorena E.
    Sala, Evis
    Rubin, Daniel L.
    Weller, Adrian
    Lasenby, Joan
    Zheng, Chuangsheng
    Wang, Jianming
    Li, Zhen
    Schonlieb, Carola
    Xia, Tian
    NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1081 - 1089
  • [47] Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence
    Laghi, Andrea
    LANCET DIGITAL HEALTH, 2020, 2 (05): : E225 - E225
  • [48] Deployment of artificial intelligence for radiographic diagnosis of COVID-19 pneumonia in the emergency department
    Carlile, Morgan
    Hurt, Brian
    Hsiao, Albert
    Hogarth, Michael
    Longhurst, Christopher A.
    Dameff, Christian
    JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS OPEN, 2020, 1 (06) : 1459 - 1464
  • [49] Deployment of Artificial Intelligence for Radiographic Diagnosis of COVID-19 Pneumonia in the Emergency Department
    Carlile, M.
    Hurt, B.
    Hsiao, A.
    Hogarth, M.
    Longhurst, C.
    Dameff, C.
    ANNALS OF EMERGENCY MEDICINE, 2020, 76 (04) : S109 - S110
  • [50] Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence
    Xiang Bai
    Hanchen Wang
    Liya Ma
    Yongchao Xu
    Jiefeng Gan
    Ziwei Fan
    Fan Yang
    Ke Ma
    Jiehua Yang
    Song Bai
    Chang Shu
    Xinyu Zou
    Renhao Huang
    Changzheng Zhang
    Xiaowu Liu
    Dandan Tu
    Chuou Xu
    Wenqing Zhang
    Xi Wang
    Anguo Chen
    Yu Zeng
    Dehua Yang
    Ming-Wei Wang
    Nagaraj Holalkere
    Neil J. Halin
    Ihab R. Kamel
    Jia Wu
    Xuehua Peng
    Xiang Wang
    Jianbo Shao
    Pattanasak Mongkolwat
    Jianjun Zhang
    Weiyang Liu
    Michael Roberts
    Zhongzhao Teng
    Lucian Beer
    Lorena E. Sanchez
    Evis Sala
    Daniel L. Rubin
    Adrian Weller
    Joan Lasenby
    Chuansheng Zheng
    Jianming Wang
    Zhen Li
    Carola Schönlieb
    Tian Xia
    Nature Machine Intelligence, 2021, 3 : 1081 - 1089