Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables

被引:16
|
作者
Thimoteo, Lucas M. [1 ]
Vellasco, Marley M. [1 ]
Amaral, Jorge [2 ]
Figueiredo, Karla [3 ]
Yokoyama, Catia Lie [4 ]
Marques, Erito [2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Engn Elect, Rio De Janeiro, RJ, Brazil
[2] Univ Estado Rio de Janeiro, Programa Posgrad Engn Eletron PEL, Rio De Janeiro, RJ, Brazil
[3] Univ Estado Rio de Janeiro, Programa Posgrad Telessaude, Programa Posgrad Ciencias Computacionais CCOMP, Rio De Janeiro, RJ, Brazil
[4] Univ Estadual Londrina, Dept Biol Geral, Londrina, Parana, Brazil
关键词
COVID-19; diagnosis; Machine learning; Explainability; Interpretability; Shapley additive explanations; Explainable boosting machine; CYTOKINE STORM; SARS-COV-2;
D O I
10.1007/s40313-021-00858-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes an explainable artificial intelligence approach to help diagnose COVID-19 patients based on blood test and pathogen variables. Two glass-box models, logistic regression and explainable boosting machine, and two black-box models, random forest and support vector machine, were used to assess the disease diagnosis. Shapley additive explanations were used to explain predictions for the black-box models, while glass-box models feature importance brought insights into the most relevant features. All global explanations show the eosinophils and leukocytes, white blood cells are among the essential features to help diagnose the COVID-19. Moreover, the best model obtained an AUC of 0.87.
引用
收藏
页码:625 / 644
页数:20
相关论文
共 50 条
  • [21] Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
    Jin, Cheng
    Chen, Weixiang
    Cao, Yukun
    Xu, Zhanwei
    Tan, Zimeng
    Zhang, Xin
    Deng, Lei
    Zheng, Chuansheng
    Zhou, Jie
    Shi, Heshui
    Feng, Jianjiang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [22] Explainable artificial intelligence approaches for COVID-19 prognosis prediction using clinical markers
    Chadaga, Krishnaraj
    Prabhu, Srikanth
    Sampathila, Niranjana
    Chadaga, Rajagopala
    Umakanth, Shashikiran
    Bhat, Devadas
    Kumar, G. S. Shashi
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [23] Explainable artificial intelligence approaches for COVID-19 prognosis prediction using clinical markers
    Krishnaraj Chadaga
    Srikanth Prabhu
    Niranjana Sampathila
    Rajagopala Chadaga
    Shashikiran Umakanth
    Devadas Bhat
    Shashi Kumar G S
    Scientific Reports, 14
  • [24] A Survey of COVID-19 Diagnosis Using Routine Blood Tests with the Aid of Artificial Intelligence Techniques
    Habashi, Soheila Abbasi
    Koyuncu, Murat
    Alizadehsani, Roohallah
    DIAGNOSTICS, 2023, 13 (10)
  • [25] COVID-19 diagnosis using clinical markers and multiple explainable artificial intelligence approaches: A case study from Ecuador
    Chadaga, Krishnaraj
    Prabhu, Srikanth
    Bhat, Vivekananda
    Sampathila, Niranjana
    Umakanth, Shashikiran
    Upadya, Sudhakara P.
    SLAS TECHNOLOGY, 2023, 28 (06): : 393 - 410
  • [26] A Decision Support System for Diagnosis of COVID-19 from Non-COVID-19 Influenza-like Illness Using Explainable Artificial Intelligence
    Chadaga, Krishnaraj
    Prabhu, Srikanth
    Bhat, Vivekananda
    Sampathila, Niranjana
    Umakanth, Shashikiran
    Chadaga, Rajagopala
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [27] An Explainable System for Diagnosis and Prognosis of COVID-19
    Lu, Jiayi
    Jin, Renchao
    Song, Enmin
    Alrashoud, Mubarak
    Al-Mutib, Khaled N.
    S. Al-Rakhami, Mabrook
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21) : 15839 - 15846
  • [28] Exploring metabolic anomalies in COVID-19 and post-COVID-19: a machine learning approach with explainable artificial intelligence
    Oropeza-Valdez, Juan Jose
    Padron-Manrique, Cristian
    Vazquez-Jimenez, Aaron
    Soberon, Xavier
    Resendis-Antonio, Osbaldo
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2024, 11
  • [29] Artificial intelligence-enabled rapid diagnosis of patients with COVID-19
    Mei, Xueyan
    Lee, Hao-Chih
    Diao, Kai-yue
    Huang, Mingqian
    Lin, Bin
    Liu, Chenyu
    Xie, Zongyu
    Ma, Yixuan
    Robson, Philip M.
    Chung, Michael
    Bernheim, Adam
    Mani, Venkatesh
    Calcagno, Claudia
    Li, Kunwei
    Li, Shaolin
    Shan, Hong
    Lv, Jian
    Zhao, Tongtong
    Xia, Junli
    Long, Qihua
    Steinberger, Sharon
    Jacobi, Adam
    Deyer, Timothy
    Luksza, Marta
    Liu, Fang
    Little, Brent P.
    Fayad, Zahi A.
    Yang, Yang
    NATURE MEDICINE, 2020, 26 (08) : 1224 - +
  • [30] Smart and Automated Diagnosis of COVID-19 Using Artificial Intelligence Techniques
    Alajmi, Masoud
    Elshakankiry, Osama A.
    El-Shafai, Walid
    El-Sayed, Hala S.
    Sallam, Ahmed, I
    El-Hoseny, Heba M.
    Sedik, Ahmed
    Faragallah, Osama S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03): : 1403 - 1413