Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables

被引:16
|
作者
Thimoteo, Lucas M. [1 ]
Vellasco, Marley M. [1 ]
Amaral, Jorge [2 ]
Figueiredo, Karla [3 ]
Yokoyama, Catia Lie [4 ]
Marques, Erito [2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Engn Elect, Rio De Janeiro, RJ, Brazil
[2] Univ Estado Rio de Janeiro, Programa Posgrad Engn Eletron PEL, Rio De Janeiro, RJ, Brazil
[3] Univ Estado Rio de Janeiro, Programa Posgrad Telessaude, Programa Posgrad Ciencias Computacionais CCOMP, Rio De Janeiro, RJ, Brazil
[4] Univ Estadual Londrina, Dept Biol Geral, Londrina, Parana, Brazil
关键词
COVID-19; diagnosis; Machine learning; Explainability; Interpretability; Shapley additive explanations; Explainable boosting machine; CYTOKINE STORM; SARS-COV-2;
D O I
10.1007/s40313-021-00858-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes an explainable artificial intelligence approach to help diagnose COVID-19 patients based on blood test and pathogen variables. Two glass-box models, logistic regression and explainable boosting machine, and two black-box models, random forest and support vector machine, were used to assess the disease diagnosis. Shapley additive explanations were used to explain predictions for the black-box models, while glass-box models feature importance brought insights into the most relevant features. All global explanations show the eosinophils and leukocytes, white blood cells are among the essential features to help diagnose the COVID-19. Moreover, the best model obtained an AUC of 0.87.
引用
收藏
页码:625 / 644
页数:20
相关论文
共 50 条
  • [1] Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables
    Lucas M. Thimoteo
    Marley M. Vellasco
    Jorge Amaral
    Karla Figueiredo
    Cátia Lie Yokoyama
    Erito Marques
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 625 - 644
  • [2] Enhancing COVID-19 Diagnosis Accuracy and Transparency with Explainable Artificial Intelligence (XAI) Techniques
    Sonika Malik
    Preeti Rathee
    SN Computer Science, 5 (7)
  • [3] BeCaked: An Explainable Artificial Intelligence Model for COVID-19 Forecasting
    Duc Q Nguyen
    Nghia Q Vo
    Thinh T Nguyen
    Khuong Nguyen-An
    Quang H Nguyen
    Dang N Tran
    Tho T Quan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] BeCaked: An Explainable Artificial Intelligence Model for COVID-19 Forecasting
    Duc Q. Nguyen
    Nghia Q. Vo
    Thinh T. Nguyen
    Khuong Nguyen-An
    Quang H. Nguyen
    Dang N. Tran
    Tho T. Quan
    Scientific Reports, 12
  • [5] Explainable artificial intelligence model for identifying COVID-19 gene biomarkers
    Yagin, Fatma Hilal
    Cicek, Ipek Balikci
    Alkhateeb, Abedalrhman
    Yagin, Burak
    Colak, Cemil
    Azzeh, Mohammad
    Akbulut, Sami
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 154
  • [6] Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
    Hengrui Liang
    Yuchen Guo
    Xiangru Chen
    Keng-Leong Ang
    Yuwei He
    Na Jiang
    Qiang Du
    Qingsi Zeng
    Ligong Lu
    Zebin Gao
    Linduo Li
    Quanzheng Li
    Fangxing Nie
    Guiguang Ding
    Gao Huang
    Ailan Chen
    Yimin Li
    Weijie Guan
    Ling Sang
    Yuanda Xu
    Huai Chen
    Zisheng Chen
    Shiyue Li
    Nuofu Zhang
    Ying Chen
    Danxia Huang
    Run Li
    Jianfu Li
    Bo Cheng
    Yi Zhao
    Caichen Li
    Shan Xiong
    Runchen Wang
    Jun Liu
    Wei Wang
    Jun Huang
    Fei Cui
    Tao Xu
    Fleming Y. M. Lure
    Meixiao Zhan
    Yuanyi Huang
    Qiang Yang
    Qionghai Dai
    Wenhua Liang
    Jianxing He
    Nanshan Zhong
    European Radiology, 2022, 32 : 2235 - 2245
  • [7] Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics
    Asada, Ken
    Komatsu, Masaaki
    Shimoyama, Ryo
    Takasawa, Ken
    Shinkai, Norio
    Sakai, Akira
    Bolatkan, Amina
    Yamada, Masayoshi
    Takahashi, Satoshi
    Machino, Hidenori
    Kobayashi, Kazuma
    Kaneko, Syuzo
    Hamamoto, Ryuji
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [8] Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
    Liang, Hengrui
    Guo, Yuchen
    Chen, Xiangru
    Ang, Keng-Leong
    He, Yuwei
    Jiang, Na
    Du, Qiang
    Zeng, Qingsi
    Lu, Ligong
    Gao, Zebin
    Li, Linduo
    Li, Quanzheng
    Nie, Fangxing
    Ding, Guiguang
    Huang, Gao
    Chen, Ailan
    Li, Yimin
    Guan, Weijie
    Sang, Ling
    Xu, Yuanda
    Chen, Huai
    Chen, Zisheng
    Li, Shiyue
    Zhang, Nuofu
    Chen, Ying
    Huang, Danxia
    Li, Run
    Li, Jianfu
    Cheng, Bo
    Zhao, Yi
    Li, Caichen
    Xiong, Shan
    Wang, Runchen
    Liu, Jun
    Wang, Wei
    Huang, Jun
    Cui, Fei
    Xu, Tao
    Lure, Fleming Y. M.
    Zhan, Meixiao
    Huang, Yuanyi
    Yang, Qiang
    Dai, Qionghai
    Liang, Wenhua
    He, Jianxing
    Zhong, Nanshan
    EUROPEAN RADIOLOGY, 2022, 32 (04) : 2235 - 2245
  • [9] Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives
    Huang, Shigao
    Yang, Jie
    Fong, Simon
    Zhao, Qi
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2021, 17 (06): : 1581 - 1587
  • [10] COVID-19 diagnosis from routine blood tests using artificial intelligence techniques
    Rikan, Samin Babaei
    Azar, Amir Sorayaie
    Ghafari, Ali
    Mohasefi, Jamshid Bagherzadeh
    Pirnejad, Habibollah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72