Quantum Estimates of Ostrowski Inequalities for Generalized φ-Convex Functions

被引:12
|
作者
Vivas-Cortez, Miguel J. [1 ]
Kashuri, Artion [2 ]
Liko, Rozana [2 ]
Hernandez Hernandez, Jorge E. [3 ]
机构
[1] Pontificia Univ Catolica Ecuador, Escuela Ciencias Fis & Matemat, Fac Ciencias Exactas & Nat, Av 12 Octubre 1076, Quito 17012184, Ecuador
[2] Univ Ismail Qemali, Fac Tech Sci, Dept Math, L Pavaresia 1001, Vlora, Albania
[3] Univ Centroccidental Lisandro Alvarado, Dept Tecn Cuantitat, Decanato Ciencias Econ & Empresariales, Av 20 Esq Av Moran,Edf Mil,Piso 2,Ofc 2, Barquisimeto 3001, Venezuela
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 12期
关键词
ostrowski inequality; quantum estimates; raina's function; generalized convexity; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES;
D O I
10.3390/sym11121513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the study is focused on the quantum estimates of Ostrowski type inequalities for q-differentiable functions involving the special function introduced by R.K. Raina which depends on certain parameters. Our methodology involves Jackson's q-integral, the basic concepts of quantum calculus, and a generalization of a class of special functions used in the frame of convex sets and convex functions. As a main result, some quantum estimates for the aforementioned inequality are established and some cases involving the special hypergeometric and Mittag-Leffler functions have been studied and some known results are deduced.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [42] OSTROWSKI TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR MT-CONVEX FUNCTIONS
    Liu, Wenjun
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 249 - 256
  • [43] LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES INVOLVING GENERALIZED h-CONVEX FUNCTIONS AND SOME APPLICATIONS FOR GENERALIZED MOMENTS
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [44] NEW OSTROWSKI TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS AND APPLICATIONS
    Kavurmaci, Havva
    Ozdemir, M. Emin
    Avci, Merve
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (02): : 135 - 145
  • [45] Ostrowski like inequalities for (?, ?, ?, ?)-convex functions via fuzzy Riemann integrals
    Mehmood, Faraz
    Hassan, Ali
    Idrees, Atif
    Nawaz, Faisal
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 31 (02): : 137 - 149
  • [46] On Ostrowski-Mercer inequalities for differentiable harmonically convex functions with applications
    Ali, Muhammad Aamir
    Asjad, Muhammad Imran
    Budak, Huseyin
    Faridi, Waqas Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 8546 - 8559
  • [47] Ostrowski type inequalities via some exponentially convex functions with applications
    Mehreen, Naila
    Anwar, Matloob
    AIMS MATHEMATICS, 2020, 5 (02): : 1476 - 1483
  • [48] On Ostrowski-Mercer type inequalities for twice differentiable convex functions
    Yuksel, Ebru
    FILOMAT, 2024, 38 (19) : 6945 - 6955
  • [49] Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications
    Barnett, NS
    Cerone, P
    Dragomir, SS
    Pinheiro, MR
    Sofo, A
    INEQUALITY THEORY AND APPLICATIONS, VOL 2, 2003, : 19 - 32
  • [50] QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 781 - 793