Quantum Estimates of Ostrowski Inequalities for Generalized φ-Convex Functions

被引:12
|
作者
Vivas-Cortez, Miguel J. [1 ]
Kashuri, Artion [2 ]
Liko, Rozana [2 ]
Hernandez Hernandez, Jorge E. [3 ]
机构
[1] Pontificia Univ Catolica Ecuador, Escuela Ciencias Fis & Matemat, Fac Ciencias Exactas & Nat, Av 12 Octubre 1076, Quito 17012184, Ecuador
[2] Univ Ismail Qemali, Fac Tech Sci, Dept Math, L Pavaresia 1001, Vlora, Albania
[3] Univ Centroccidental Lisandro Alvarado, Dept Tecn Cuantitat, Decanato Ciencias Econ & Empresariales, Av 20 Esq Av Moran,Edf Mil,Piso 2,Ofc 2, Barquisimeto 3001, Venezuela
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 12期
关键词
ostrowski inequality; quantum estimates; raina's function; generalized convexity; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES;
D O I
10.3390/sym11121513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the study is focused on the quantum estimates of Ostrowski type inequalities for q-differentiable functions involving the special function introduced by R.K. Raina which depends on certain parameters. Our methodology involves Jackson's q-integral, the basic concepts of quantum calculus, and a generalization of a class of special functions used in the frame of convex sets and convex functions. As a main result, some quantum estimates for the aforementioned inequality are established and some cases involving the special hypergeometric and Mittag-Leffler functions have been studied and some known results are deduced.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fractional Ostrowski type inequalities for differentiable harmonically convex functions
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Promsakon, Chanon
    AIMS MATHEMATICS, 2022, 7 (03): : 3939 - 3958
  • [22] SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS
    Liu, Wenjun
    Zhuang, Hefeng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 501 - 522
  • [23] Some Quantum Estimates Of Hermite-Hadamard Inequalities For φ-Convex Functions
    Rangel-Oliveros, Yenny
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 232 - 251
  • [24] Ostrowski's Type Inequalities for (alpha, m)-Convex Functions
    Ozdemir, Muhamet Emin
    Kavurmaci, Havva
    Set, Erhan
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (03): : 371 - 378
  • [25] Ostrowski Type Inequalities Involving Harmonically Convex Functions and Applications
    Akhtar, Nousheen
    Awan, Muhammad Uzair
    Javed, Muhammad Zakria
    Rassias, Michael Th
    Mihai, Marcela, V
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 23
  • [26] GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-CONVEX IN THE SECOND SENSE
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Set, Erhan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2016, 15 (04) : 11 - 21
  • [27] On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals
    Budak, Huseyin
    Hezenci, Fatih
    Kara, Hasan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [28] On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals
    Hüseyin Budak
    Fatih Hezenci
    Hasan Kara
    Advances in Difference Equations, 2021
  • [29] Quantum estimates in two variable forms for Simpson-type inequalities considering generalized ψ-convex functions with applications
    Chu, Yu-Ming
    Rauf, Asia
    Rashid, Saima
    Batool, Safeera
    Hamed, Y. S.
    OPEN PHYSICS, 2021, 19 (01): : 305 - 326
  • [30] Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (03): : 2629 - 2645