Quantum Estimates of Ostrowski Inequalities for Generalized φ-Convex Functions

被引:12
|
作者
Vivas-Cortez, Miguel J. [1 ]
Kashuri, Artion [2 ]
Liko, Rozana [2 ]
Hernandez Hernandez, Jorge E. [3 ]
机构
[1] Pontificia Univ Catolica Ecuador, Escuela Ciencias Fis & Matemat, Fac Ciencias Exactas & Nat, Av 12 Octubre 1076, Quito 17012184, Ecuador
[2] Univ Ismail Qemali, Fac Tech Sci, Dept Math, L Pavaresia 1001, Vlora, Albania
[3] Univ Centroccidental Lisandro Alvarado, Dept Tecn Cuantitat, Decanato Ciencias Econ & Empresariales, Av 20 Esq Av Moran,Edf Mil,Piso 2,Ofc 2, Barquisimeto 3001, Venezuela
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 12期
关键词
ostrowski inequality; quantum estimates; raina's function; generalized convexity; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES;
D O I
10.3390/sym11121513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the study is focused on the quantum estimates of Ostrowski type inequalities for q-differentiable functions involving the special function introduced by R.K. Raina which depends on certain parameters. Our methodology involves Jackson's q-integral, the basic concepts of quantum calculus, and a generalization of a class of special functions used in the frame of convex sets and convex functions. As a main result, some quantum estimates for the aforementioned inequality are established and some cases involving the special hypergeometric and Mittag-Leffler functions have been studied and some known results are deduced.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 899 - 917
  • [32] Quantum Trapezium-Type Inequalities Using Generalized φ-Convex Functions
    Vivas-Cortez, Miguel J.
    Kashuri, Artion
    Liko, Rozana
    Hernandez, Jorge E.
    AXIOMS, 2020, 9 (01)
  • [33] GENERALIZED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Ekinci, Alper
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1429 - 1439
  • [34] Generalized geometrically convex functions and inequalities
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Farhat Safdar
    Journal of Inequalities and Applications, 2017
  • [35] Generalized geometrically convex functions and inequalities
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Safdar, Farhat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [36] NEW OSTROWSKI LIKE INEQUALITIES FOR GG-CONVEX AND GA-CONVEX FUNCTIONS
    Ardic, Merve Avci
    Akdemir, Ahmet Ocak
    Set, Erhan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1159 - 1168
  • [37] OSTROWSKI TYPE INEQUALITIES FOR m- AND (α, m)-LOGARITMICALLY CONVEX FUNCTIONS
    Kavurmaci, Havva
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 820 - 826
  • [38] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Hüseyin Budak
    Journal of Inequalities and Applications, 2022
  • [39] Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications
    Asawasamrit, Suphawat
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2021, 6 (12): : 13327 - 13346
  • [40] OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE MT-CONVEX
    Tunc, Mevlut
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (04) : 691 - 696