Maxwell equations in curved space-time: non-vanishing magnetic field in pure electrostatic systems

被引:3
|
作者
Nikolaev, N. N. [1 ,2 ]
Vergeles, S. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 42432, Moscow Region, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyj 141707, Moskow Region, Russia
关键词
Classical Theories of Gravity; Precision QED;
D O I
10.1007/JHEP04(2020)191
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Solutions of the Maxwell equations for electrostatic systems with manifestly vanishing electric currents in the curved space-time for stationary metrics are shown to exhibit a non-vanishing magnetic field of pure geometric origin. In contrast to the conventional magnetic field of the Earth it can not be screened away by a magnetic shielding. As an example of practical significance we treat electrostatic systems at rest on the rotating Earth and derive the relevant geometric magnetic field. We comment on its impact on the ultimate precision searches of the electric dipole moments of ultracold neutrons and of protons in all electric storage rings.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Discretization of Maxwell's Equations for Non-inertial Observers Using Space-Time Algebra
    Klimek, Mariusz
    Kurz, Stefan
    Schops, Sebastian
    Weiland, Thomas
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (01)
  • [42] The Maxwell-Vlasov system for particles with charge density on a curved space-time
    Noutchegueme, N
    Tegankong, D
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2010): : 1485 - 1499
  • [43] Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra
    Mariusz Klimek
    Stefan Kurz
    Sebastian Schöps
    Thomas Weiland
    Advances in Applied Clifford Algebras, 2018, 28
  • [44] CELESTIAL COORDINATE REFERENCE SYSTEMS IN CURVED SPACE-TIME
    Kopejkin, S. M.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 44 (1-2): : 87 - 115
  • [45] RENORMALIZATION OF QUANTUM-FIELD THEORY IN CURVED SPACE-TIME AND RENORMALIZATION-GROUP EQUATIONS
    BUCHBINDER, IL
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1986, 34 (09): : 605 - 628
  • [46] Space-Time Parallel Computation for Time-Domain Maxwell's Equations
    Wang, Shu
    Peng, Zhen
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 1680 - 1683
  • [47] The Icosian code and the E8 lattice:: A new 4 x 4 space-time code with non-vanishing determinant
    Liu, J.
    Calderbank, A. R.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1006 - +
  • [48] Space-Time Discretization of Maxwell's Equations in the Setting of Geometric Algebra
    Klimek, Mariusz
    Roemer, Ulrich
    Schoeps, Sebastian
    Weiland, Thomas
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 1101 - 1104
  • [49] Boundary stabilization of Maxwell's equations with space-time variable coefficients
    Nicaise, S
    Pignotti, C
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 : 563 - 578