Maxwell equations in curved space-time: non-vanishing magnetic field in pure electrostatic systems

被引:3
|
作者
Nikolaev, N. N. [1 ,2 ]
Vergeles, S. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 42432, Moscow Region, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyj 141707, Moskow Region, Russia
关键词
Classical Theories of Gravity; Precision QED;
D O I
10.1007/JHEP04(2020)191
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Solutions of the Maxwell equations for electrostatic systems with manifestly vanishing electric currents in the curved space-time for stationary metrics are shown to exhibit a non-vanishing magnetic field of pure geometric origin. In contrast to the conventional magnetic field of the Earth it can not be screened away by a magnetic shielding. As an example of practical significance we treat electrostatic systems at rest on the rotating Earth and derive the relevant geometric magnetic field. We comment on its impact on the ultimate precision searches of the electric dipole moments of ultracold neutrons and of protons in all electric storage rings.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] SYMMETRY OPERATORS FOR MAXWELLS EQUATIONS ON CURVED SPACE-TIME
    KALNINS, EG
    MCLENAGHAN, RG
    WILLIAMS, GC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1905): : 103 - 113
  • [22] QUATERNION WAVE-EQUATIONS IN CURVED SPACE-TIME
    EDMONDS, JD
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 10 (02) : 115 - 122
  • [23] CHARGED-PARTICLE TRAJECTORIES IN A MAGNETIC-FIELD ON A CURVED SPACE-TIME
    PRASANNA, AR
    VARMA, RK
    PRAMANA, 1977, 8 (03) : 229 - 244
  • [24] Space-time regularity of the solution to Maxwell's equations in non-convex domains
    Garcia, E
    Labrunie, S
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 400 - 405
  • [25] Space-time regularity of the solution to Maxwell's equations in non-convex domains
    Garcia, E
    Labrunie, S
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) : 293 - 298
  • [26] CLASS OF SPACE-TIME SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
    LEROY, J
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1978, 64 (04): : 130 - 152
  • [27] Spatially Modulated Orthogonal Space-Time Block Codes With Non-Vanishing Determinants (vol 62, pg 85, 2014)
    Wang, Lei
    Chen, Zhigang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (10) : 3723 - 3724
  • [28] A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time
    Pelykh V.O.
    Taistra Y.V.
    Journal of Mathematical Sciences, 2018, 229 (2) : 162 - 173
  • [29] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939
  • [30] A slow Galileon scalar field in curved space-time
    Germani, Cristiano
    Martucci, Luca
    Moyassari, Parvin
    PHYSICAL REVIEW D, 2012, 85 (10):