Steep polyominoes, q-Motzkin numbers and q-Bessel functions

被引:13
|
作者
Barcucci, E
Del Lungo, A
Fedou, JM
Pinzani, R
机构
[1] Dipartimento Sistemi & Informat, I-50134 Florence, Italy
[2] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
关键词
q-analogs; Motzkin numbers; polyominoes; words and q-Bessel functions;
D O I
10.1016/S0012-365X(97)00275-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce three definitions of q-analogs of Motzkin numbers and illustrate some combinatorial interpretations of these q-numbers. We relate the first class of q-numbers to the generating function for steep parallelogram polyominoes according to their width, perimeter and area. We show that this generating function is the quotient of two q-Bessel functions, The second class of q-Motzkin numbers counts the steep staircase polyominoes according to their area, while the third one enumerates the inversions of steep Dyck words. These enumerations allow us to illustrate various techniques of counting and q-counting. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [21] Starlikeness and Convexity Properties of the Big q-Bessel Functions
    Toklu, Evrim
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (01)
  • [22] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    Eweis, S. Z. H.
    Mansour, Z. S., I
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [23] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    S. Z. H. Eweis
    Z. S. I. Mansour
    Results in Mathematics, 2022, 77
  • [24] QUANTUM ALGEBRA εq (2) AND 2D q-BESSEL FUNCTIONS
    Riyasat, Mumtaz
    Khan, Subuhi
    Nahid, Tabinda
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (02) : 191 - 206
  • [25] On the zeros of a q-Bessel function
    Hayman, WK
    Complex Analysis and Dynamical Systems II, 2005, 382 : 205 - 216
  • [26] ON THE q-BESSEL FOURIER TRANSFORM
    Dhaouadi, Lazhar
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 5 (02): : 42 - 60
  • [27] GENERALIZED q-BESSEL OPERATOR
    Dhaouadi, Lazhar
    Hleili, Manel
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 20 - 37
  • [28] 3nj-symbols and identities for q-Bessel functions
    Groenevelt, Wolter
    RAMANUJAN JOURNAL, 2018, 47 (02): : 317 - 337
  • [29] Zeta functions, heat kernel expansions, and asymptotics for q-bessel functions
    Kvitsinsky, AA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (03) : 947 - 964
  • [30] Univalence of Certain Integral Operators Involving q-Bessel Functions
    Bucur, Roberta
    Breaz, Daniel
    FILOMAT, 2019, 33 (09) : 2673 - 2682