Steep polyominoes, q-Motzkin numbers and q-Bessel functions

被引:13
|
作者
Barcucci, E
Del Lungo, A
Fedou, JM
Pinzani, R
机构
[1] Dipartimento Sistemi & Informat, I-50134 Florence, Italy
[2] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
关键词
q-analogs; Motzkin numbers; polyominoes; words and q-Bessel functions;
D O I
10.1016/S0012-365X(97)00275-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce three definitions of q-analogs of Motzkin numbers and illustrate some combinatorial interpretations of these q-numbers. We relate the first class of q-numbers to the generating function for steep parallelogram polyominoes according to their width, perimeter and area. We show that this generating function is the quotient of two q-Bessel functions, The second class of q-Motzkin numbers counts the steep staircase polyominoes according to their area, while the third one enumerates the inversions of steep Dyck words. These enumerations allow us to illustrate various techniques of counting and q-counting. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 50 条
  • [1] Crossings and nestings over some Motzkin objects and q-Motzkin numbers
    Andriantsoa, Sandrataniaina R.
    Rakotomamonjy, Paul M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03): : 1 - 20
  • [2] GENERALIZED Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) : 345 - 354
  • [3] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
  • [4] Modified q-Bessel functions and q-Macdonald functions
    Olshanetskii, MA
    Rogov, VBK
    SBORNIK MATHEMATICS, 1996, 187 (9-10) : 1525 - 1544
  • [5] ADDITION FORMULAS FOR Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) : 2984 - 2988
  • [6] About Jackson q-Bessel functions
    Zhang, CG
    JOURNAL OF APPROXIMATION THEORY, 2003, 122 (02) : 208 - 223
  • [7] ON PARTIAL SUMS OF NORMALIZED q-BESSEL FUNCTIONS
    Artas, Ibrahim
    Orhan, Halit
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 535 - 547
  • [8] A NOTE ON THE ORTHOGONALITY OF JACKSON Q-BESSEL FUNCTIONS
    RAHMAN, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03): : 369 - 376
  • [9] On the Zeros of the Big q-Bessel Functions and Applications
    Bouzeffour, Fethi
    Ben Mansour, Hanene
    Garayev, Mubariz
    MATHEMATICS, 2020, 8 (02)
  • [10] Toeplitz matrices and classical and q-Bessel functions
    Rubin, RL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) : 564 - 576