Weakly stretch Finsler metrics

被引:20
|
作者
Najafi, Behzad [1 ]
Tayebi, Akbar [2 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
关键词
stretch metric; Landsberg metric; generalized Berwald metric; Randers metric; flag curvature; RIEMANNIAN CURVATURE PROPERTIES; ISOTROPIC BERWALD METRICS; S-CURVATURE; LANDSBERG MANIFOLDS; FLAG CURVATURE; BETA)-METRICS; CONNECTIONS; (ALPHA; SPACES; TENSOR;
D O I
10.5486/PMD.2017.7761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条