Weakly stretch Finsler metrics

被引:20
|
作者
Najafi, Behzad [1 ]
Tayebi, Akbar [2 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
关键词
stretch metric; Landsberg metric; generalized Berwald metric; Randers metric; flag curvature; RIEMANNIAN CURVATURE PROPERTIES; ISOTROPIC BERWALD METRICS; S-CURVATURE; LANDSBERG MANIFOLDS; FLAG CURVATURE; BETA)-METRICS; CONNECTIONS; (ALPHA; SPACES; TENSOR;
D O I
10.5486/PMD.2017.7761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条
  • [31] Weakly conformal Finsler geometry
    Rafie-Rad, Mehdi
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1745 - 1755
  • [32] On weakly symmetric Finsler spaces
    Habibi, Parastoo
    Razavi, Asadollah
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 570 - 573
  • [33] On conformal complex Finsler metrics
    Hongjun Li
    Chunhui Qiu
    Hongchuan Xia
    Guozhu Zhong
    ScienceChina(Mathematics), 2022, 65 (07) : 1517 - 1530
  • [34] On Almost Rational Finsler Metrics
    Ebtsam H. Taha
    Bankteshwar Tiwari
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [35] On a new class of Finsler metrics
    Yu, Changtao
    Zhu, Hongmei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) : 244 - 254
  • [36] Geodesic orbit Finsler (α, β) metrics
    Dusek, Zdenek
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (01)
  • [37] Deformation of complex Finsler metrics
    Szasz-Friedl, Annamaria
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 229 - 244
  • [38] On Finsler metrics of quadratic curvature
    Sadeghzadeh, Nasrin
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 75 - 83
  • [39] On Almost Rational Finsler Metrics
    Taha, Ebtsam H.
    Tiwari, Bankteshwar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (02)
  • [40] On conformal complex Finsler metrics
    Hongjun Li
    Chunhui Qiu
    Hongchuan Xia
    Guozhu Zhong
    Science China Mathematics, 2022, 65 : 1517 - 1530