In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
机构:
Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, IranInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Yu, Changtao
Zhu, Hongmei
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China