Weakly stretch Finsler metrics

被引:20
|
作者
Najafi, Behzad [1 ]
Tayebi, Akbar [2 ]
机构
[1] Amirkabir Univ, Dept Math & Comp Sci, Tehran, Iran
[2] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 91卷 / 3-4期
关键词
stretch metric; Landsberg metric; generalized Berwald metric; Randers metric; flag curvature; RIEMANNIAN CURVATURE PROPERTIES; ISOTROPIC BERWALD METRICS; S-CURVATURE; LANDSBERG MANIFOLDS; FLAG CURVATURE; BETA)-METRICS; CONNECTIONS; (ALPHA; SPACES; TENSOR;
D O I
10.5486/PMD.2017.7761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new non-Riemannian quantity named mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics. First, we show that every complete weakly stretch Finsler manifold with bounded mean Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. Finally, we show that every generalized Berwald Randers metric with a Killing form beta with respect to alpha is a weakly stretch metric if and only if it is a Berwald metric.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条
  • [21] On a class of projectively flat Finsler metrics with weakly isotropic flag curvature
    Chen, Guangzu
    Cheng, Xinyue
    Yuan, Mingao
    PERIODICA MATHEMATICA HUNGARICA, 2013, 67 (02) : 155 - 166
  • [22] On a class of projectively flat Finsler metrics with weakly isotropic flag curvature
    Guangzu Chen
    Xinyue Cheng
    Mingao Yuan
    Periodica Mathematica Hungarica, 2013, 67 : 155 - 166
  • [23] On strongly convex weakly Kahler-Finsler metrics of constant flag curvature
    Xia, Hongchuan
    Zhong, Chunping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 891 - 912
  • [24] STRUCTURE OF GEODESICS IN WEAKLY SYMMETRIC FINSLER METRICS ON H-TYPE GROUPS
    Dusek, Zdenek
    ARCHIVUM MATHEMATICUM, 2020, 56 (05): : 265 - 275
  • [25] Deformations of Finsler metrics
    Anastasiei, M
    Shimada, H
    FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 53 - 65
  • [26] On Einstein Finsler metrics
    Ulgen, Semail
    Sevim, Esra Sengelen
    Hacinliyan, Irma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (09)
  • [27] Generalization of Finsler metrics on the product of Finsler manifolds
    Sadighi, Akbar
    Khatamy, R. Chavosh
    Toomanian, Megerdich
    MATHEMATICAL SCIENCES, 2018, 12 (04) : 243 - 248
  • [28] Generalization of Finsler metrics on the product of Finsler manifolds
    Akbar Sadighi
    R. Chavosh Khatamy
    Megerdich Toomanian
    Mathematical Sciences, 2018, 12 : 243 - 248
  • [29] Finsler metrics and CPT
    Sarkar, Sarben
    GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [30] WEAKLY SYMMETRIC FINSLER SPACES
    Deng, Shaoqiang
    Hou, Zixin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (02) : 309 - 323