The Asymptotic Stability of the Solution to the Full Hall-MHD System in R3

被引:0
|
作者
Tong, Leilei [1 ]
Tan, Zhong [2 ,3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Appl Math, Chongqing 400065, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Full Hall-MHD equations; Optimal decay rates; Energy method; Regular interpolation; COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; MACH NUMBER LIMIT; GLOBAL EXISTENCE; WELL-POSEDNESS; CLASSICAL-SOLUTIONS; DECAY-RATES; BLOW-UP; MAGNETIC RECONNECTION; LARGE OSCILLATIONS; UNIQUENESS;
D O I
10.1007/s40840-019-00751-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the asymptotic stability of the solutions near a constant equilibrium state to the Cauchy problem for the compressible full Hall-MHD equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3$$\end{document}. We employ the energy estimate and introduce the negative Sobolev and Besov spaces to get the global existence and decay rates of the solution under the assumption that the H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>3$$\end{document} norm of the initial perturbation is small. As an immediate byproduct, the Lp-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p-L<^>2$$\end{document}(1 <= p <= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p\leqslant 2)$$\end{document} type of the decay rates follows without requiring the smallness for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} norm of initial data.
引用
收藏
页码:1465 / 1491
页数:27
相关论文
共 50 条
  • [41] On the global well-posedness for the compressible Hall-MHD system
    Han, Bin
    Hu, Ke
    Lai, Ning-An
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [42] The inhomogeneous incompressible Hall-MHD system with only bounded density
    Jin Tan
    Lan Zhang
    Science China(Mathematics), 2025, 68 (04) : 839 - 872
  • [43] Global existence and asymptotic stability of the fractional chemotaxis-fluid system in R3
    Zhu, Shanshan
    Liu, Zuhan
    Zhou, Ling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 : 149 - 190
  • [44] On the regularity criteria for the 3D axisymmetric Hall-MHD system in Lorentz spaces
    Li, Zhouyu
    Zhou, Daoguo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
  • [45] Regularity criteria for 3D Hall-MHD equations
    Xuanji Jia
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [46] Regularity criteria for 3D Hall-MHD equations
    Jia, Xuanji
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [47] Structural stability of asymptotic lines on surfaces immersed in R3
    Garcia, R
    Gutierrez, C
    Sotomayor, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (08): : 599 - 622
  • [48] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE FULL EULER SYSTEM WITH DAMPING AND RADIATIVE EFFECTS IN R3
    Deng, Shijin
    Wang, Wenjun
    Xie, Feng
    Yang, Xiongfeng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) : 789 - 816
  • [49] On vanishing limits of the shear viscosity and Hall coefficients for the planar compressible Hall-MHD system
    Ye, Xia
    Wang, Zejia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3698 - 3717
  • [50] Liouville-type theorem for the steady compressible Hall-MHD system
    Zeng, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 205 - 211