The Asymptotic Stability of the Solution to the Full Hall-MHD System in R3

被引:0
|
作者
Tong, Leilei [1 ]
Tan, Zhong [2 ,3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Appl Math, Chongqing 400065, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Full Hall-MHD equations; Optimal decay rates; Energy method; Regular interpolation; COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; MACH NUMBER LIMIT; GLOBAL EXISTENCE; WELL-POSEDNESS; CLASSICAL-SOLUTIONS; DECAY-RATES; BLOW-UP; MAGNETIC RECONNECTION; LARGE OSCILLATIONS; UNIQUENESS;
D O I
10.1007/s40840-019-00751-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the asymptotic stability of the solutions near a constant equilibrium state to the Cauchy problem for the compressible full Hall-MHD equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3$$\end{document}. We employ the energy estimate and introduce the negative Sobolev and Besov spaces to get the global existence and decay rates of the solution under the assumption that the H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>3$$\end{document} norm of the initial perturbation is small. As an immediate byproduct, the Lp-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p-L<^>2$$\end{document}(1 <= p <= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p\leqslant 2)$$\end{document} type of the decay rates follows without requiring the smallness for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} norm of initial data.
引用
收藏
页码:1465 / 1491
页数:27
相关论文
共 50 条
  • [21] On the asymptotic behavior of solutions to 3D generalized Hall-MHD equations
    Zhao, Xiaopeng
    MATHEMATISCHE NACHRICHTEN, 2021, : 1230 - 1241
  • [22] A regularity criterion for the generalized Hall-MHD system
    Gu, Weijiang
    Ma, Caochuan
    Sun, Jianzhu
    BOUNDARY VALUE PROBLEMS, 2016,
  • [23] A regularity criterion for a generalized Hall-MHD system
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2438 - 2443
  • [24] Regularity criteria for the incompressible Hall-MHD system
    Fan, Jishan
    Fukumoto, Yasuhide
    Nakamura, Gen
    Zhou, Yong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1156 - 1160
  • [25] A regularity criterion for the generalized Hall-MHD system
    Weijiang Gu
    Caochuan Ma
    Jianzhu Sun
    Boundary Value Problems, 2016
  • [26] The Asymptotic Stability of the Solution to the Full Hall-MHD System in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}
    Leilei Tong
    Zhong Tan
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 (2) : 1465 - 1491
  • [27] Uniform Regularity for the Isentropic Hall-MHD System
    Fan, Jishan
    Zhou, Yong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (03): : 303 - 311
  • [28] On well-posedness and blow-up for the full compressible Hall-MHD system
    Fan, Jishan
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 569 - 579
  • [29] Global regularity for the 3D generalized Hall-MHD system
    Pan, Nana
    Ma, Caochuan
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2016, 61 : 62 - 66
  • [30] 3D Hall-MHD system with vorticity in Besov spaces
    Zhang, Zujin
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 91 - 98