The Asymptotic Stability of the Solution to the Full Hall-MHD System in R3

被引:0
|
作者
Tong, Leilei [1 ]
Tan, Zhong [2 ,3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Appl Math, Chongqing 400065, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Full Hall-MHD equations; Optimal decay rates; Energy method; Regular interpolation; COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; MACH NUMBER LIMIT; GLOBAL EXISTENCE; WELL-POSEDNESS; CLASSICAL-SOLUTIONS; DECAY-RATES; BLOW-UP; MAGNETIC RECONNECTION; LARGE OSCILLATIONS; UNIQUENESS;
D O I
10.1007/s40840-019-00751-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the asymptotic stability of the solutions near a constant equilibrium state to the Cauchy problem for the compressible full Hall-MHD equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3$$\end{document}. We employ the energy estimate and introduce the negative Sobolev and Besov spaces to get the global existence and decay rates of the solution under the assumption that the H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>3$$\end{document} norm of the initial perturbation is small. As an immediate byproduct, the Lp-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p-L<^>2$$\end{document}(1 <= p <= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p\leqslant 2)$$\end{document} type of the decay rates follows without requiring the smallness for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} norm of initial data.
引用
收藏
页码:1465 / 1491
页数:27
相关论文
共 50 条
  • [31] On the continuation principle of local smooth solution for the Hall-MHD equations
    Agarwal, Ravi P.
    Alghamdi, Ahmad M. A.
    Gala, Sadek
    Ragusa, Maria Alessandra
    APPLICABLE ANALYSIS, 2022, 101 (02) : 545 - 553
  • [32] Global Small Solutions to the Inviscid Hall-MHD System
    Xiaoping Zhai
    Yongsheng Li
    Yajuan Zhao
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [33] Global Small Solutions to the Inviscid Hall-MHD System
    Zhai, Xiaoping
    Li, Yongsheng
    Zhao, Yajuan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
  • [34] Global well-posedness of the full compressible Hall-MHD equations
    Tao, Qiang
    Zhu, Canze
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1235 - 1254
  • [35] A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations
    Alghamdi, A. M.
    Gala, S.
    Ragusa, M. A.
    AIMS MATHEMATICS, 2018, 3 (04): : 565 - 574
  • [36] Remarks on Liouville Type Result for the 3D Hall-MHD System
    Zhang Zujin
    Yang Xian
    Qiu Shulin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 28 (03): : 286 - 290
  • [37] The inhomogeneous incompressible Hall-MHD system with only bounded density
    Tan, Jin
    Zhang, Lan
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (04) : 839 - 872
  • [38] On blow-up criteria for a new Hall-MHD system
    Fan, Jishan
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 20 - 24
  • [39] Regularity criteria for the 3D generalized MHD and Hall-MHD systems
    Jiang, Zaihong
    Zhu, Mingxuan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 105 - 122
  • [40] Regularity criteria for the 3D generalized MHD and Hall-MHD systems
    Zaihong Jiang
    Mingxuan Zhu
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 105 - 122